Spaces:
Build error
Build error
| from __future__ import annotations | |
| import logging | |
| import os | |
| from functools import cached_property | |
| from typing import TYPE_CHECKING, Callable | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from modules import devices, errors, face_restoration, shared | |
| from modules_forge.utils import prepare_free_memory | |
| if TYPE_CHECKING: | |
| from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
| logger = logging.getLogger(__name__) | |
| def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor: | |
| """Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor.""" | |
| assert img.shape[2] == 3, "image must be RGB" | |
| if img.dtype == "float64": | |
| img = img.astype("float32") | |
| img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
| return torch.from_numpy(img.transpose(2, 0, 1)).float() | |
| def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray: | |
| """ | |
| Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range. | |
| """ | |
| tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) | |
| tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) | |
| assert tensor.dim() == 3, "tensor must be RGB" | |
| img_np = tensor.numpy().transpose(1, 2, 0) | |
| if img_np.shape[2] == 1: # gray image, no RGB/BGR required | |
| return np.squeeze(img_np, axis=2) | |
| return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB) | |
| def create_face_helper(device) -> FaceRestoreHelper: | |
| from facexlib.detection import retinaface | |
| from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
| if hasattr(retinaface, 'device'): | |
| retinaface.device = device | |
| return FaceRestoreHelper( | |
| upscale_factor=1, | |
| face_size=512, | |
| crop_ratio=(1, 1), | |
| det_model='retinaface_resnet50', | |
| save_ext='png', | |
| use_parse=True, | |
| device=device, | |
| ) | |
| def restore_with_face_helper( | |
| np_image: np.ndarray, | |
| face_helper: FaceRestoreHelper, | |
| restore_face: Callable[[torch.Tensor], torch.Tensor], | |
| ) -> np.ndarray: | |
| """ | |
| Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image. | |
| `restore_face` should take a cropped face image and return a restored face image. | |
| """ | |
| from torchvision.transforms.functional import normalize | |
| np_image = np_image[:, :, ::-1] | |
| original_resolution = np_image.shape[0:2] | |
| try: | |
| logger.debug("Detecting faces...") | |
| face_helper.clean_all() | |
| face_helper.read_image(np_image) | |
| face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) | |
| face_helper.align_warp_face() | |
| logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces)) | |
| for cropped_face in face_helper.cropped_faces: | |
| cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0) | |
| normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) | |
| cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) | |
| try: | |
| with torch.no_grad(): | |
| cropped_face_t = restore_face(cropped_face_t) | |
| devices.torch_gc() | |
| except Exception: | |
| errors.report('Failed face-restoration inference', exc_info=True) | |
| restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1)) | |
| restored_face = (restored_face * 255.0).astype('uint8') | |
| face_helper.add_restored_face(restored_face) | |
| logger.debug("Merging restored faces into image") | |
| face_helper.get_inverse_affine(None) | |
| img = face_helper.paste_faces_to_input_image() | |
| img = img[:, :, ::-1] | |
| if original_resolution != img.shape[0:2]: | |
| img = cv2.resize( | |
| img, | |
| (0, 0), | |
| fx=original_resolution[1] / img.shape[1], | |
| fy=original_resolution[0] / img.shape[0], | |
| interpolation=cv2.INTER_LINEAR, | |
| ) | |
| logger.debug("Face restoration complete") | |
| finally: | |
| face_helper.clean_all() | |
| return img | |
| class CommonFaceRestoration(face_restoration.FaceRestoration): | |
| net: torch.Module | None | |
| model_url: str | |
| model_download_name: str | |
| def __init__(self, model_path: str): | |
| super().__init__() | |
| self.net = None | |
| self.model_path = model_path | |
| os.makedirs(model_path, exist_ok=True) | |
| def face_helper(self) -> FaceRestoreHelper: | |
| return create_face_helper(self.get_device()) | |
| def send_model_to(self, device): | |
| if self.net: | |
| logger.debug("Sending %s to %s", self.net, device) | |
| self.net.to(device) | |
| if self.face_helper: | |
| logger.debug("Sending face helper to %s", device) | |
| self.face_helper.face_det.to(device) | |
| self.face_helper.face_parse.to(device) | |
| def get_device(self): | |
| raise NotImplementedError("get_device must be implemented by subclasses") | |
| def load_net(self) -> torch.Module: | |
| raise NotImplementedError("load_net must be implemented by subclasses") | |
| def restore_with_helper( | |
| self, | |
| np_image: np.ndarray, | |
| restore_face: Callable[[torch.Tensor], torch.Tensor], | |
| ) -> np.ndarray: | |
| try: | |
| if self.net is None: | |
| self.net = self.load_net() | |
| except Exception: | |
| logger.warning("Unable to load face-restoration model", exc_info=True) | |
| return np_image | |
| try: | |
| prepare_free_memory() | |
| self.send_model_to(self.get_device()) | |
| return restore_with_face_helper(np_image, self.face_helper, restore_face) | |
| finally: | |
| if shared.opts.face_restoration_unload: | |
| self.send_model_to(devices.cpu) | |
| def patch_facexlib(dirname: str) -> None: | |
| import facexlib.detection | |
| import facexlib.parsing | |
| det_facex_load_file_from_url = facexlib.detection.load_file_from_url | |
| par_facex_load_file_from_url = facexlib.parsing.load_file_from_url | |
| def update_kwargs(kwargs): | |
| return dict(kwargs, save_dir=dirname, model_dir=None) | |
| def facex_load_file_from_url(**kwargs): | |
| return det_facex_load_file_from_url(**update_kwargs(kwargs)) | |
| def facex_load_file_from_url2(**kwargs): | |
| return par_facex_load_file_from_url(**update_kwargs(kwargs)) | |
| facexlib.detection.load_file_from_url = facex_load_file_from_url | |
| facexlib.parsing.load_file_from_url = facex_load_file_from_url2 | |