Spaces:
Runtime error
Runtime error
fix: π show files when image saved
Browse filesSigned-off-by: Onuralp SEZER <[email protected]>
.DS_Store
ADDED
|
Binary file (8.2 kB). View file
|
|
|
app.py
CHANGED
|
@@ -14,7 +14,7 @@ from mmengine.runner.amp import autocast
|
|
| 14 |
from mmyolo.registry import RUNNERS
|
| 15 |
from torchvision.ops import nms
|
| 16 |
import supervision as sv
|
| 17 |
-
import
|
| 18 |
import cv2
|
| 19 |
|
| 20 |
import gradio as gr
|
|
@@ -23,10 +23,10 @@ import gradio as gr
|
|
| 23 |
TITLE = """
|
| 24 |
# YOLO-World-Seg
|
| 25 |
|
| 26 |
-
This is a demo of zero-shot object detection and instance segmentation using
|
| 27 |
-
[YOLO-World](https://github.com/AILab-CVC/YOLO-World)
|
| 28 |
|
| 29 |
-
Powered by [Supervision](https://github.com/roboflow/supervision).
|
| 30 |
"""
|
| 31 |
|
| 32 |
EXAMPLES = [
|
|
@@ -62,11 +62,13 @@ def run_image(
|
|
| 62 |
max_num_boxes=100,
|
| 63 |
):
|
| 64 |
runner = load_runner()
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
| 67 |
|
| 68 |
texts = [[t.strip()] for t in class_names.split(",")] + [[" "]]
|
| 69 |
-
data_info = runner.pipeline(dict(img_id=0, img_path=
|
| 70 |
texts=texts))
|
| 71 |
|
| 72 |
data_batch = dict(
|
|
@@ -102,7 +104,8 @@ def run_image(
|
|
| 102 |
in zip(detections.class_id, detections.confidence)
|
| 103 |
]
|
| 104 |
|
| 105 |
-
svimage =
|
|
|
|
| 106 |
svimage = label_annotator.annotate(svimage, detections, labels)
|
| 107 |
svimage = mask_annotator.annotate(svimage,detections)
|
| 108 |
return svimage
|
|
@@ -142,7 +145,7 @@ with gr.Blocks() as demo:
|
|
| 142 |
with gr.Tab(label="Image"):
|
| 143 |
with gr.Row():
|
| 144 |
input_image_component = gr.Image(
|
| 145 |
-
type='
|
| 146 |
label='Input Image'
|
| 147 |
)
|
| 148 |
output_image_component = gr.Image(
|
|
|
|
| 14 |
from mmyolo.registry import RUNNERS
|
| 15 |
from torchvision.ops import nms
|
| 16 |
import supervision as sv
|
| 17 |
+
from PIL import Image
|
| 18 |
import cv2
|
| 19 |
|
| 20 |
import gradio as gr
|
|
|
|
| 23 |
TITLE = """
|
| 24 |
# YOLO-World-Seg
|
| 25 |
|
| 26 |
+
This is a demo of zero-shot object detection and instance segmentation using only
|
| 27 |
+
[YOLO-World](https://github.com/AILab-CVC/YOLO-World) done via newest model YOLO-World-Seg.
|
| 28 |
|
| 29 |
+
Annototions Powered by [Supervision](https://github.com/roboflow/supervision).
|
| 30 |
"""
|
| 31 |
|
| 32 |
EXAMPLES = [
|
|
|
|
| 62 |
max_num_boxes=100,
|
| 63 |
):
|
| 64 |
runner = load_runner()
|
| 65 |
+
|
| 66 |
+
image_path='./work_dirs/input.png'
|
| 67 |
+
os.makedirs('./work_dirs', exist_ok=True)
|
| 68 |
+
input_image.save(image_path)
|
| 69 |
|
| 70 |
texts = [[t.strip()] for t in class_names.split(",")] + [[" "]]
|
| 71 |
+
data_info = runner.pipeline(dict(img_id=0, img_path=image_path,
|
| 72 |
texts=texts))
|
| 73 |
|
| 74 |
data_batch = dict(
|
|
|
|
| 104 |
in zip(detections.class_id, detections.confidence)
|
| 105 |
]
|
| 106 |
|
| 107 |
+
svimage = np.array(input_image)
|
| 108 |
+
svimage = box_annotator.annotate(svimage, detections)
|
| 109 |
svimage = label_annotator.annotate(svimage, detections, labels)
|
| 110 |
svimage = mask_annotator.annotate(svimage,detections)
|
| 111 |
return svimage
|
|
|
|
| 145 |
with gr.Tab(label="Image"):
|
| 146 |
with gr.Row():
|
| 147 |
input_image_component = gr.Image(
|
| 148 |
+
type='pil',
|
| 149 |
label='Input Image'
|
| 150 |
)
|
| 151 |
output_image_component = gr.Image(
|