Spaces:
Sleeping
Sleeping
import numpy as np | |
from models.solvers.ortools.ortools_base import ORToolsBase | |
class ORToolsPCTSPTW(ORToolsBase): | |
def __init__(self, large_value=1e+6, scaling=False): | |
super().__init__(large_value, scaling) | |
def scaling_feats(self, node_feats): | |
return { | |
key: (node_feat * self.large_value + 0.5).astype(np.int64) | |
if key in ("coords", "prizes", "penalties", "time_window", "min_prize") else | |
node_feat | |
for key, node_feat in node_feats.items() | |
} | |
def add_constraints(self, routing, transit_callback_index, manager, data, node_feats): | |
# Add penalties to nodes except for the depot | |
# ORTools can ignore the nodes with taking the penalties | |
penalties = node_feats["penalties"] | |
for i in range(1, len(data['distance_matrix'])): | |
index = manager.NodeToIndex(i) | |
routing.AddDisjunction([index], penalties[i].item()) | |
# Add other constraints | |
self.add_prize_constraints(routing, data, node_feats) | |
self.add_time_window_constraints(routing, transit_callback_index, manager, data, node_feats) | |
def add_time_window_constraints(self, routing, transit_callback_index, manager, data, node_feats): | |
time_window = node_feats["time_window"] | |
end_time = time_window[0, 1].item() | |
routing.AddDimension( | |
transit_callback_index, | |
end_time, # max_wait_time | |
end_time, # end_time | |
False, | |
"Time" | |
) | |
time_dimension = routing.GetDimensionOrDie("Time") | |
# set time window | |
for i in range(len(data['distance_matrix'])): | |
index = manager.NodeToIndex(i) | |
start = time_window[i, 0] | |
end = time_window[i, 1] | |
time_dimension.CumulVar(index).SetRange(int(start), int(end)) | |
def add_prize_constraints(self, routing, data, node_feats): | |
# Add prize dimension | |
dim_name = "Prize" | |
prizes = node_feats["prizes"] | |
def prize_callback(from_node, to_node): | |
return prizes[from_node].item() | |
prize_callback_index = routing.RegisterTransitCallback(prize_callback) | |
routing.AddDimension( | |
prize_callback_index, | |
0, # Null capacity slack | |
np.sum(prizes).item(), # Upper bound | |
True, # Start cumul to zero | |
dim_name) | |
# Minimum prize constraints | |
capacity_dimension = routing.GetDimensionOrDie(dim_name) | |
for vehicle_id in range(data["num_vehicles"]): # Only single vehicle | |
capacity_dimension.CumulVar(routing.End(vehicle_id)).RemoveInterval(0, node_feats["min_prize"].item()) |