Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import pandas as pd | |
| from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item | |
| from huggingface_hub.utils._errors import HfHubHTTPError | |
| from pandas import DataFrame | |
| from src.display.utils import AutoEvalColumn, ModelType | |
| from src.envs import H4_TOKEN, PATH_TO_COLLECTION | |
| # Specific intervals for the collections | |
| intervals = { | |
| "1B": pd.Interval(0, 1.5, closed="right"), | |
| "3B": pd.Interval(2.5, 3.5, closed="neither"), | |
| "7B": pd.Interval(6, 8, closed="neither"), | |
| "13B": pd.Interval(10, 14, closed="neither"), | |
| "30B": pd.Interval(25, 35, closed="neither"), | |
| "65B": pd.Interval(60, 70, closed="neither"), | |
| } | |
| def _filter_by_type_and_size(df, model_type, size_interval): | |
| """Filter DataFrame by model type and parameter size interval.""" | |
| type_emoji = model_type.value.symbol[0] | |
| filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji] | |
| params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
| mask = params_column.apply(lambda x: x in size_interval) | |
| return filtered_df.loc[mask] | |
| def _add_models_to_collection(collection, models, model_type, size): | |
| """Add best models to the collection and update positions.""" | |
| cur_len_collection = len(collection.items) | |
| for ix, model in enumerate(models, start=1): | |
| try: | |
| collection = add_collection_item( | |
| PATH_TO_COLLECTION, | |
| item_id=model, | |
| item_type="model", | |
| exists_ok=True, | |
| note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!", | |
| token=H4_TOKEN, | |
| ) | |
| # Ensure position is correct if item was added | |
| if len(collection.items) > cur_len_collection: | |
| item_object_id = collection.items[-1].item_object_id | |
| update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix) | |
| cur_len_collection = len(collection.items) | |
| break # assuming we only add the top model | |
| except HfHubHTTPError: | |
| continue | |
| def update_collections(df: DataFrame): | |
| """Update collections by filtering and adding the best models.""" | |
| collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN) | |
| cur_best_models = [] | |
| for model_type in ModelType: | |
| if not model_type.value.name: | |
| continue | |
| for size, interval in intervals.items(): | |
| filtered_df = _filter_by_type_and_size(df, model_type, interval) | |
| best_models = list( | |
| filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.fullname.name][:10] | |
| ) | |
| print(model_type.value.symbol, size, best_models) | |
| _add_models_to_collection(collection, best_models, model_type, size) | |
| cur_best_models.extend(best_models) | |
| # Cleanup | |
| existing_models = {item.item_id for item in collection.items} | |
| to_remove = existing_models - set(cur_best_models) | |
| for item_id in to_remove: | |
| try: | |
| delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN) | |
| except HfHubHTTPError: | |
| continue |