File size: 4,016 Bytes
f623499
d868240
f623499
5f54938
 
d868240
 
f623499
5f54938
 
 
 
 
 
 
f623499
5b095ea
 
 
 
 
 
 
 
 
 
 
 
 
5f54938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01383fd
 
5f54938
01383fd
 
5f54938
 
5b095ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163abc1
 
 
 
 
 
 
 
 
 
 
7659936
53d87ea
aaa36a5
 
 
 
 
 
 
 
 
 
163abc1
53d87ea
 
 
93e2d63
 
53d87ea
 
 
a7687c2
 
d487c27
 
 
163abc1
d487c27
163abc1
103ea47
 
 
 
 
53d87ea
 
7659936
5f54938
 
 
7044139
5b095ea
7044139
5f54938
 
5b095ea
7659936
5b095ea
163abc1
5f54938
 
 
 
 
 
 
 
687e594
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
import json
import pandas as pd
from urllib.request import urlopen
from urllib.error import URLError
import re
from datetime import datetime

CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"


head_style = """
<style>
@media (min-width: 1536px)
{
    .gradio-container {
        min-width: var(--size-full) !important;
    }
}
</style>
"""


DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/dev-assets/hf-research/"

def findfile():
    model_meta_info = 'model-meta-info'
    results_sum = 'hf-academic'

    url = f"{DATA_URL_BASE}{model_meta_info}.json"
    response = urlopen(url)
    model_info = json.loads(response.read().decode('utf-8'))

    url = f"{DATA_URL_BASE}{results_sum}.json"
    response = urlopen(url)
    results = json.loads(response.read().decode('utf-8'))

    return model_info, results


MAIN_LEADERBOARD_DESCRIPTION = """## Compass Academic Leaderboard
--WIP--

"""
Initial_title = 'Compass Academic Leaderboard'



def make_results_tab(model_info, results):
    models_list, datasets_list = [], []
    for i in model_info:
        models_list.append([i['abbr'], i['display_name']])
    for i in results.keys():
        datasets_list.append(i)
    
    result_list = []
    index = 0
    for model in models_list:
        this_result = {}
        this_result['Index'] = index
        this_result['Model Name'] = model[1]
        index += 1        
        for dataset in datasets_list:
            this_result[dataset] = results[dataset][model[0]]
        result_list.append(this_result)

    df = pd.DataFrame(result_list)
    return df 


def calculate_column_widths(df):
    column_widths = []
    for column in df.columns:
        header_length = len(str(column))
        max_content_length = df[column].astype(str).map(len).max()
        width = max(header_length * 10, max_content_length * 8) + 20
        width = max(160, min(400, width))
        column_widths.append(width)
    return column_widths


def show_results_tab(df, model_info, results):
    
    # def filter_df(model_name):
    #     df = make_results_tab(model_info, results)
    #     default_val = 'Input the Model Name (fuzzy)'
    #     if model_name != default_val:
    #         method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in df['Model Name']]
    #         flag = [model_name.lower() in name for name in method_names]
    #         df['TEMP'] = flag
    #         df = df[df['TEMP'] == True] 
    #         df.pop('TEMP')
    # return df

    with gr.Row():
        model_name = gr.Textbox(
            value='Input the Model Name (fuzzy)', 
            label='Search Model Name',
            interactive=True
        )


    
    table = gr.DataFrame(
            value=df,
            interactive=False,
            wrap=False,
            column_widths=calculate_column_widths(df),
    )

    # search_box.submit(
    #     fn=filter_df,
    #     inputs=search_box,
    #     outputs=table
    # )



def create_interface():
    model_info, results = findfile()

    with gr.Blocks() as demo:
        # title_comp = gr.Markdown(Initial_title)
        gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
        with gr.Tabs(elem_classes='tab-buttons') as tabs:
            with gr.TabItem('Results', elem_id='main', id=0):
                df = make_results_tab(model_info, results)
                show_results_tab(df, model_info, results)

            with gr.TabItem('Predictions', elem_id='notmain', id=1):
                # dataset_tab(results, structs[i], dataset)
                pass

    return demo

# model_info, results = findfile()
# breakpoint()

if __name__ == '__main__':
    demo = create_interface()
    demo.queue()
    demo.launch(server_name='0.0.0.0')