File size: 6,580 Bytes
f623499
d868240
f623499
5f54938
 
d868240
 
f623499
5f54938
 
 
 
 
 
 
f623499
5b095ea
 
 
 
 
 
 
 
 
 
 
 
5f54938
 
9c5799a
 
 
 
 
 
 
 
 
 
18faeea
5f54938
 
 
 
 
 
 
 
 
 
 
 
 
 
18faeea
 
5f54938
 
 
5b095ea
 
 
 
9c5799a
5b095ea
 
 
 
2d6b1ed
5b095ea
 
 
9c5799a
 
 
5b095ea
 
9c5799a
5b095ea
 
 
 
 
 
2d6b1ed
163abc1
 
 
 
 
 
 
 
 
 
 
e614523
 
18faeea
53d87ea
18faeea
9c5799a
18faeea
9c5799a
 
18faeea
 
 
 
 
 
 
c808603
9c5799a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c808603
9c5799a
 
c808603
 
 
18faeea
163abc1
9c5799a
53d87ea
6a6cccd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53d87ea
b8d53ac
 
 
 
 
 
 
163abc1
6a6cccd
aef7c31
e614523
9c5799a
e614523
 
6a6cccd
9c5799a
 
6a6cccd
 
 
9c5799a
 
6a6cccd
 
 
53d87ea
 
7659936
5f54938
 
18faeea
7044139
5b095ea
7044139
5f54938
 
5b095ea
e614523
5b095ea
163abc1
5f54938
 
 
 
 
 
 
 
687e594
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import gradio as gr
import json
import pandas as pd
from urllib.request import urlopen
from urllib.error import URLError
import re
from datetime import datetime

CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
    title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
    author={OpenCompass Contributors},
    howpublished = {\url{https://github.com/open-compass/opencompass}},
    year={2023}
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"


head_style = """
<style>
@media (min-width: 1536px)
{
    .gradio-container {
        min-width: var(--size-full) !important;
    }
}
</style>
"""

DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/dev-assets/hf-research/"

MAIN_LEADERBOARD_DESCRIPTION = """## Compass Academic Leaderboard
--WIP--

"""
Initial_title = 'Compass Academic Leaderboard'

MODEL_SIZE = ['<10B', '10B-70B', '>70B', 'Unknown']
MODEL_TYPE = ['API', 'OpenSource']



def findfile():
    model_meta_info = 'model-meta-info'
    results_sum = 'hf-academic'

    url = f"{DATA_URL_BASE}{model_meta_info}.json"
    response = urlopen(url)
    model_info = json.loads(response.read().decode('utf-8'))

    url = f"{DATA_URL_BASE}{results_sum}.json"
    response = urlopen(url)
    results = json.loads(response.read().decode('utf-8'))

    return model_info, results

model_info, results = findfile()





def make_results_tab(model_info, results):
    models_list, datasets_list = [], []
    for i in model_info:
        models_list.append(i)
    for i in results.keys():
        datasets_list.append(i)
    
    result_list = []
    index = 1
    for model in models_list:
        this_result = {}
        this_result['Index'] = index
        this_result['Model Name'] = model['display_name']
        this_result['Parameters'] = model['num_param']
        this_result['Opensource'] = model['release_type']
        index += 1        
        for dataset in datasets_list:
            this_result[dataset] = results[dataset][model['abbr']]
        result_list.append(this_result)

    df = pd.DataFrame(result_list)
    return df 



def calculate_column_widths(df):
    column_widths = []
    for column in df.columns:
        header_length = len(str(column))
        max_content_length = df[column].astype(str).map(len).max()
        width = max(header_length * 10, max_content_length * 8) + 20
        width = max(160, min(400, width))
        column_widths.append(width)
    return column_widths



def show_results_tab(df):

    
    def filter_df(model_name):
        
        newdf = make_results_tab(model_info, results)

        # search model name
        default_val = 'Input the Model Name'
        if model_name != default_val:
            method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in newdf['Model Name']]
            flag = [model_name.lower() in name for name in method_names]
            newdf['TEMP'] = flag
            newdf = newdf[newdf['TEMP'] == True] 
            newdf.pop('TEMP')
            
        
        # filter size
        if size_ranges:
            def get_size_in_B(param):
                if param == 'N/A':
                    return None
                try:
                    return float(param.replace('B', ''))
                except:
                    return None
            
            newdf['size_in_B'] = newdf['Parameters'].apply(get_size_in_B)
            mask = pd.Series(False, index=newdf.index)
            
            for size_range in size_ranges:
                if size_range == '<10B':
                    mask |= (newdf['size_in_B'] < 10) & (newdf['size_in_B'].notna())
                elif size_range == '10B-70B':
                    mask |= (newdf['size_in_B'] >= 10) & (newdf['size_in_B'] < 70)
                elif size_range == '>70B':
                    mask |= newdf['size_in_B'] >= 70
                elif size_range == 'Unknown':
                    mask |= newdf['size_in_B'].isna()
                    
            newdf = newdf[mask]
            newdf.drop('size_in_B', axis=1, inplace=True)

        # filter opensource
        if model_types:
            type_mask = pd.Series(False, index=newdf.index)
            for model_type in model_types:
                if model_type == 'API':
                    type_mask |= newdf['Opensource'] == 'No'
                elif model_type == 'Opensource':
                    type_mask |= filtered_df['newdf'] == 'Yes'
            newdf = newdf[type_mask]

        for i in range(len(newdf)):
            df.loc[i, 'Index'] = i+1
        
        return newdf

        
    with gr.Row():
        with gr.Column():
            model_name = gr.Textbox(
                value='Input the Model Name', 
                label='Search Model Name',
                interactive=True
            )
        with gr.Column():
            size_filter = gr.CheckboxGroup(
                choices=MODEL_SIZE,
                value=MODEL_SIZE,
                label='Model Size',
                interactive=True,
            )
        with gr.Column():
            type_filter = gr.CheckboxGroup(
                choices=MODEL_TYPE,
                value=MODEL_TYPE,
                label='Model Type',
                interactive=True,
            )

    with gr.Column():
        table = gr.DataFrame(
                value=df,
                interactive=False,
                wrap=False,
                column_widths=calculate_column_widths(df),
        )

    
    model_name.submit(
        fn=filter_df,
        inputs=[model_name, size_filter, type_filter],
        outputs=table
    )
    size_filter.change(
        fn=filter_df,
        inputs=[model_name, size_filter, type_filter],
        outputs=table,
    )
    type_filter.change(
        fn=filter_df,
        inputs=[model_name, size_filter, type_filter],
        outputs=table,
    )




def create_interface():


    with gr.Blocks() as demo:
        # title_comp = gr.Markdown(Initial_title)
        gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
        with gr.Tabs(elem_classes='tab-buttons') as tabs:
            with gr.TabItem('Results', elem_id='main', id=0):
                df = make_results_tab(model_info, results)
                show_results_tab(df)

            with gr.TabItem('Predictions', elem_id='notmain', id=1):
                # dataset_tab(results, structs[i], dataset)
                pass

    return demo

# model_info, results = findfile()
# breakpoint()

if __name__ == '__main__':
    demo = create_interface()
    demo.queue()
    demo.launch(server_name='0.0.0.0')