File size: 6,580 Bytes
f623499 d868240 f623499 5f54938 d868240 f623499 5f54938 f623499 5b095ea 5f54938 9c5799a 18faeea 5f54938 18faeea 5f54938 5b095ea 9c5799a 5b095ea 2d6b1ed 5b095ea 9c5799a 5b095ea 9c5799a 5b095ea 2d6b1ed 163abc1 e614523 18faeea 53d87ea 18faeea 9c5799a 18faeea 9c5799a 18faeea c808603 9c5799a c808603 9c5799a c808603 18faeea 163abc1 9c5799a 53d87ea 6a6cccd 53d87ea b8d53ac 163abc1 6a6cccd aef7c31 e614523 9c5799a e614523 6a6cccd 9c5799a 6a6cccd 9c5799a 6a6cccd 53d87ea 7659936 5f54938 18faeea 7044139 5b095ea 7044139 5f54938 5b095ea e614523 5b095ea 163abc1 5f54938 687e594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import json
import pandas as pd
from urllib.request import urlopen
from urllib.error import URLError
import re
from datetime import datetime
CITATION_BUTTON_TEXT = r"""@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
howpublished = {\url{https://github.com/open-compass/opencompass}},
year={2023}
}"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
head_style = """
<style>
@media (min-width: 1536px)
{
.gradio-container {
min-width: var(--size-full) !important;
}
}
</style>
"""
DATA_URL_BASE = "http://opencompass.oss-cn-shanghai.aliyuncs.com/dev-assets/hf-research/"
MAIN_LEADERBOARD_DESCRIPTION = """## Compass Academic Leaderboard
--WIP--
"""
Initial_title = 'Compass Academic Leaderboard'
MODEL_SIZE = ['<10B', '10B-70B', '>70B', 'Unknown']
MODEL_TYPE = ['API', 'OpenSource']
def findfile():
model_meta_info = 'model-meta-info'
results_sum = 'hf-academic'
url = f"{DATA_URL_BASE}{model_meta_info}.json"
response = urlopen(url)
model_info = json.loads(response.read().decode('utf-8'))
url = f"{DATA_URL_BASE}{results_sum}.json"
response = urlopen(url)
results = json.loads(response.read().decode('utf-8'))
return model_info, results
model_info, results = findfile()
def make_results_tab(model_info, results):
models_list, datasets_list = [], []
for i in model_info:
models_list.append(i)
for i in results.keys():
datasets_list.append(i)
result_list = []
index = 1
for model in models_list:
this_result = {}
this_result['Index'] = index
this_result['Model Name'] = model['display_name']
this_result['Parameters'] = model['num_param']
this_result['Opensource'] = model['release_type']
index += 1
for dataset in datasets_list:
this_result[dataset] = results[dataset][model['abbr']]
result_list.append(this_result)
df = pd.DataFrame(result_list)
return df
def calculate_column_widths(df):
column_widths = []
for column in df.columns:
header_length = len(str(column))
max_content_length = df[column].astype(str).map(len).max()
width = max(header_length * 10, max_content_length * 8) + 20
width = max(160, min(400, width))
column_widths.append(width)
return column_widths
def show_results_tab(df):
def filter_df(model_name):
newdf = make_results_tab(model_info, results)
# search model name
default_val = 'Input the Model Name'
if model_name != default_val:
method_names = [x.split('</a>')[0].split('>')[-1].lower() for x in newdf['Model Name']]
flag = [model_name.lower() in name for name in method_names]
newdf['TEMP'] = flag
newdf = newdf[newdf['TEMP'] == True]
newdf.pop('TEMP')
# filter size
if size_ranges:
def get_size_in_B(param):
if param == 'N/A':
return None
try:
return float(param.replace('B', ''))
except:
return None
newdf['size_in_B'] = newdf['Parameters'].apply(get_size_in_B)
mask = pd.Series(False, index=newdf.index)
for size_range in size_ranges:
if size_range == '<10B':
mask |= (newdf['size_in_B'] < 10) & (newdf['size_in_B'].notna())
elif size_range == '10B-70B':
mask |= (newdf['size_in_B'] >= 10) & (newdf['size_in_B'] < 70)
elif size_range == '>70B':
mask |= newdf['size_in_B'] >= 70
elif size_range == 'Unknown':
mask |= newdf['size_in_B'].isna()
newdf = newdf[mask]
newdf.drop('size_in_B', axis=1, inplace=True)
# filter opensource
if model_types:
type_mask = pd.Series(False, index=newdf.index)
for model_type in model_types:
if model_type == 'API':
type_mask |= newdf['Opensource'] == 'No'
elif model_type == 'Opensource':
type_mask |= filtered_df['newdf'] == 'Yes'
newdf = newdf[type_mask]
for i in range(len(newdf)):
df.loc[i, 'Index'] = i+1
return newdf
with gr.Row():
with gr.Column():
model_name = gr.Textbox(
value='Input the Model Name',
label='Search Model Name',
interactive=True
)
with gr.Column():
size_filter = gr.CheckboxGroup(
choices=MODEL_SIZE,
value=MODEL_SIZE,
label='Model Size',
interactive=True,
)
with gr.Column():
type_filter = gr.CheckboxGroup(
choices=MODEL_TYPE,
value=MODEL_TYPE,
label='Model Type',
interactive=True,
)
with gr.Column():
table = gr.DataFrame(
value=df,
interactive=False,
wrap=False,
column_widths=calculate_column_widths(df),
)
model_name.submit(
fn=filter_df,
inputs=[model_name, size_filter, type_filter],
outputs=table
)
size_filter.change(
fn=filter_df,
inputs=[model_name, size_filter, type_filter],
outputs=table,
)
type_filter.change(
fn=filter_df,
inputs=[model_name, size_filter, type_filter],
outputs=table,
)
def create_interface():
with gr.Blocks() as demo:
# title_comp = gr.Markdown(Initial_title)
gr.Markdown(MAIN_LEADERBOARD_DESCRIPTION)
with gr.Tabs(elem_classes='tab-buttons') as tabs:
with gr.TabItem('Results', elem_id='main', id=0):
df = make_results_tab(model_info, results)
show_results_tab(df)
with gr.TabItem('Predictions', elem_id='notmain', id=1):
# dataset_tab(results, structs[i], dataset)
pass
return demo
# model_info, results = findfile()
# breakpoint()
if __name__ == '__main__':
demo = create_interface()
demo.queue()
demo.launch(server_name='0.0.0.0')
|