Spaces:
Running
Running
import cv2 as cv | |
import numpy as np | |
class Dexined: | |
def __init__(self, modelPath='edge_detection_dexined_2024sep.onnx', backendId=0, targetId=0): | |
self._modelPath = modelPath | |
self._backendId = backendId | |
self._targetId = targetId | |
# Load the model | |
self._model = cv.dnn.readNetFromONNX(self._modelPath) | |
self.setBackendAndTarget(self._backendId, self._targetId) | |
def name(self): | |
return self.__class__.__name__ | |
def setBackendAndTarget(self, backendId, targetId): | |
self._backendId = backendId | |
self._targetId = targetId | |
self._model.setPreferableBackend(self._backendId) | |
self._model.setPreferableTarget(self._targetId) | |
def sigmoid(x): | |
return 1.0 / (1.0 + np.exp(-x)) | |
def postProcessing(self, output, shape): | |
h, w = shape | |
preds = [] | |
for p in output: | |
img = self.sigmoid(p) | |
img = np.squeeze(img) | |
img = cv.normalize(img, None, 0, 255, cv.NORM_MINMAX, cv.CV_8U) | |
img = cv.resize(img, (w, h)) | |
preds.append(img) | |
fuse = preds[-1] | |
ave = np.array(preds, dtype=np.float32) | |
ave = np.uint8(np.mean(ave, axis=0)) | |
return fuse, ave | |
def infer(self, image): | |
inp = cv.dnn.blobFromImage(image, 1.0, (512, 512), (103.5, 116.2, 123.6), swapRB=False, crop=False) | |
self._model.setInput(inp) | |
# Forward pass through the model | |
out = self._model.forward() | |
result, _ = self.postProcessing(out, image.shape[:2]) | |
return result | |