Spaces:
Running
Running
import cv2 as cv | |
import numpy as np | |
import gradio as gr | |
from yunet import YuNet | |
from huggingface_hub import hf_hub_download | |
# Download ONNX model from Hugging Face | |
model_path = hf_hub_download(repo_id="opencv/face_detection_yunet", filename="face_detection_yunet_2023mar.onnx") | |
# Initialize YuNet model | |
model = YuNet( | |
modelPath=model_path, | |
inputSize=[320, 320], | |
confThreshold=0.9, | |
nmsThreshold=0.3, | |
topK=5000, | |
backendId=cv.dnn.DNN_BACKEND_OPENCV, | |
targetId=cv.dnn.DNN_TARGET_CPU | |
) | |
def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255)): | |
output = image.copy() | |
landmark_color = [ | |
(255, 0, 0), # right eye | |
( 0, 0, 255), # left eye | |
( 0, 255, 0), # nose tip | |
(255, 0, 255), # right mouth corner | |
( 0, 255, 255) # left mouth corner | |
] | |
for det in results: | |
bbox = det[0:4].astype(np.int32) | |
cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2) | |
conf = det[-1] | |
cv.putText(output, '{:.2f}'.format(conf), (bbox[0], bbox[1] + 12), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) | |
landmarks = det[4:14].astype(np.int32).reshape((5, 2)) | |
for idx, landmark in enumerate(landmarks): | |
cv.circle(output, tuple(landmark), 2, landmark_color[idx], 2) | |
return output | |
def detect_faces(input_image): | |
input_image = cv.cvtColor(input_image, cv.COLOR_RGB2BGR) | |
h, w, _ = input_image.shape | |
model.setInputSize([w, h]) | |
results = model.infer(input_image) | |
if results is None or len(results) == 0: | |
input_image = cv.cvtColor(input_image, cv.COLOR_BGR2RGB) | |
return input_image | |
output = visualize(input_image, results) | |
output = cv.cvtColor(output, cv.COLOR_BGR2RGB) | |
return output | |
# Gradio Interface | |
# demo = gr.Interface( | |
# fn=detect_faces, | |
# inputs=gr.Image(type="numpy", label="Upload Image"), | |
# outputs=gr.Image(type="numpy", label="Detected Faces"), | |
# title="Face Detection YuNet (OpenCV DNN)", | |
# allow_flagging="never", | |
# description="Upload an image to detect faces using OpenCV's ONNX-based YuNet face detector." | |
# ) | |
# Gradio Interface | |
with gr.Blocks(css='''.example * { | |
font-style: italic; | |
font-size: 18px !important; | |
color: #0ea5e9 !important; | |
}''') as demo: | |
gr.Markdown("### Face Detection YuNet (OpenCV DNN)") | |
gr.Markdown("Upload an image to detect faces using OpenCV's ONNX-based YuNet face detector.") | |
with gr.Row(): | |
input_image = gr.Image(type="numpy", label="Upload Image") | |
output_image = gr.Image(type="numpy", label="Detected Faces") | |
# Clear output when new image is uploaded | |
input_image.change(fn=lambda: (None), outputs=output_image) | |
with gr.Row(): | |
submit_btn = gr.Button("Submit", variant="primary") | |
clear_btn = gr.Button("Clear") | |
submit_btn.click(fn=detect_faces, inputs=input_image, outputs=output_image) | |
clear_btn.click(fn=lambda:(None, None), outputs=[input_image, output_image]) | |
gr.Markdown("Click on any example to try it.", elem_classes=["example"]) | |
gr.Examples( | |
examples=[ | |
["examples/selfie.jpg"], | |
["examples/lena.jpg"], | |
["examples/messi5.jpg"] | |
], | |
inputs=input_image | |
) | |
if __name__ == "__main__": | |
demo.launch() | |