File size: 36,873 Bytes
d129378
 
 
 
 
 
 
b68ab8a
 
f4bfa4e
 
d129378
b4c56a0
 
4348906
b4c56a0
 
 
4348906
 
b4c56a0
 
 
d129378
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4bfa4e
d8bbec8
 
 
15531e3
925914f
f4bfa4e
 
 
 
d8bbec8
15531e3
 
 
 
 
925914f
51a3e6d
f4bfa4e
 
 
 
925914f
f4bfa4e
 
 
 
 
 
 
925914f
f4bfa4e
925914f
 
 
51a3e6d
925914f
15531e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925914f
15531e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8bbec8
 
f4bfa4e
15531e3
d8bbec8
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d129378
 
 
b68ab8a
d129378
b68ab8a
d129378
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
d129378
b68ab8a
 
d129378
 
 
 
 
 
 
b68ab8a
d129378
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
d129378
 
 
b68ab8a
 
 
 
 
 
d129378
b68ab8a
 
d129378
 
 
b68ab8a
 
d129378
b68ab8a
d129378
b68ab8a
 
d129378
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
 
d129378
b68ab8a
 
 
 
 
 
 
 
 
d129378
 
 
 
 
 
 
b68ab8a
d0c1a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d0bb33
 
d0c1a11
 
 
 
3d0bb33
d0c1a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d0bb33
d0c1a11
 
3d0bb33
 
 
d0c1a11
3d0bb33
d0c1a11
 
3d0bb33
 
 
d0c1a11
3d0bb33
 
d0c1a11
3d0bb33
 
 
d0c1a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d0bb33
 
d0c1a11
 
 
c315193
 
 
 
d129378
 
 
d8bbec8
4348906
 
e838605
 
b4c56a0
2290df0
c315193
51a3e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4348906
 
 
51a3e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c315193
e838605
2290df0
51a3e6d
c315193
925914f
c315193
 
51a3e6d
c315193
 
 
 
 
 
51a3e6d
c315193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e838605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c315193
 
 
 
0e1ad49
 
51a3e6d
0e1ad49
 
 
c315193
aa2fa0a
 
4348906
aa2fa0a
 
 
 
 
 
 
 
d8bbec8
f4bfa4e
d8bbec8
d129378
d8bbec8
 
 
 
 
 
 
d129378
 
 
d0c1a11
d129378
d8bbec8
d0c1a11
 
 
 
 
 
 
 
 
51a3e6d
d0c1a11
 
925914f
 
 
 
51a3e6d
d0c1a11
51a3e6d
925914f
15531e3
 
 
 
 
d0c1a11
15531e3
 
 
 
 
 
 
 
 
 
 
 
d0c1a11
 
 
 
 
f4bfa4e
b68ab8a
 
 
d8bbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b68ab8a
 
d0c1a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b68ab8a
d8bbec8
 
b68ab8a
 
 
 
 
 
d8bbec8
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d8bbec8
 
 
 
 
 
 
b68ab8a
 
 
 
 
 
 
 
 
 
 
 
d129378
d8bbec8
 
 
 
d0c1a11
 
d8bbec8
f4bfa4e
 
c315193
f4bfa4e
 
 
 
d8bbec8
d0c1a11
 
 
 
 
d129378
b68ab8a
 
 
 
 
 
 
 
d0c1a11
 
 
 
 
 
 
 
 
 
b68ab8a
b1dc22f
d0c1a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3176eb
d8bbec8
d0c1a11
d8bbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0c1a11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
import streamlit as st
from huggingface_hub import HfApi
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from functools import lru_cache
import time
import requests
from collections import Counter

st.set_page_config(page_title="HF Contributions", layout="wide", initial_sidebar_state="expanded")

# Set custom sidebar width - UPDATED to 40% of the screen
st.markdown("""
<style>
    [data-testid="stSidebar"] {
        min-width: 40vw !important;
        max-width: 40vw !important;
    }
</style>
""", unsafe_allow_html=True)
api = HfApi()


# Cache for API responses
@lru_cache(maxsize=1000)
def cached_repo_info(repo_id, repo_type):
    return api.repo_info(repo_id=repo_id, repo_type=repo_type)


@lru_cache(maxsize=1000)
def cached_list_commits(repo_id, repo_type):
    return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type))


@lru_cache(maxsize=100)
def cached_list_items(username, kind):
    if kind == "model":
        return list(api.list_models(author=username))
    elif kind == "dataset":
        return list(api.list_datasets(author=username))
    elif kind == "space":
        return list(api.list_spaces(author=username))
    return []


# Function to fetch trending accounts and create stats
@lru_cache(maxsize=1)
def get_trending_accounts(limit=100):
    try:
        trending_data = {"spaces": [], "models": []}
        
        # Get spaces for stats calculation
        spaces_response = requests.get("https://huggingface.co/api/spaces", 
                                      params={"limit": 10000}, 
                                      timeout=30)
        
        # Get models for stats calculation
        models_response = requests.get("https://huggingface.co/api/models", 
                                      params={"limit": 10000}, 
                                      timeout=30)
        
        # Process spaces data
        spaces_owners = []
        if spaces_response.status_code == 200:
            spaces = spaces_response.json()
            
            # Count spaces by owner
            owner_counts_spaces = {}
            for space in spaces:
                if '/' in space.get('id', ''):
                    owner, _ = space.get('id', '').split('/', 1)
                else:
                    owner = space.get('owner', '')
                
                if owner != 'None':
                    owner_counts_spaces[owner] = owner_counts_spaces.get(owner, 0) + 1
            
            # Get top owners by count for spaces
            top_owners_spaces = sorted(owner_counts_spaces.items(), key=lambda x: x[1], reverse=True)[:limit]
            trending_data["spaces"] = top_owners_spaces
            spaces_owners = [owner for owner, _ in top_owners_spaces]
        
        # Process models data
        models_owners = []
        if models_response.status_code == 200:
            models = models_response.json()
            
            # Count models by owner
            owner_counts_models = {}
            for model in models:
                if '/' in model.get('id', ''):
                    owner, _ = model.get('id', '').split('/', 1)
                else:
                    owner = model.get('owner', '')
                
                if owner != 'None':
                    owner_counts_models[owner] = owner_counts_models.get(owner, 0) + 1
            
            # Get top owners by count for models
            top_owners_models = sorted(owner_counts_models.items(), key=lambda x: x[1], reverse=True)[:limit]
            trending_data["models"] = top_owners_models
            models_owners = [owner for owner, _ in top_owners_models]
        
        # Combine rankings for overall trending based on appearance in both lists
        combined_score = {}
        for i, owner in enumerate(spaces_owners):
            if owner not in combined_score:
                combined_score[owner] = 0
            combined_score[owner] += (limit - i)  # Higher rank gives more points
            
        for i, owner in enumerate(models_owners):
            if owner not in combined_score:
                combined_score[owner] = 0
            combined_score[owner] += (limit - i)  # Higher rank gives more points
        
        # Sort by combined score
        sorted_combined = sorted(combined_score.items(), key=lambda x: x[1], reverse=True)[:limit]
        trending_authors = [owner for owner, _ in sorted_combined]
        
        return trending_authors, trending_data["spaces"], trending_data["models"]
    except Exception as e:
        st.error(f"Error fetching trending accounts: {str(e)}")
        fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"]
        return fallback_authors, [(author, 0) for author in fallback_authors], [(author, 0) for author in fallback_authors]


# Rate limiting
class RateLimiter:
    def __init__(self, calls_per_second=10):
        self.calls_per_second = calls_per_second
        self.last_call = 0

    def wait(self):
        current_time = time.time()
        time_since_last_call = current_time - self.last_call
        if time_since_last_call < (1.0 / self.calls_per_second):
            time.sleep((1.0 / self.calls_per_second) - time_since_last_call)
        self.last_call = time.time()


rate_limiter = RateLimiter()


# Function to fetch commits for a repository (optimized)
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year):
    try:
        rate_limiter.wait()
        # Skip private/gated repos upfront
        repo_info = cached_repo_info(repo_id, repo_type)
        if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated):
            return [], []

        # Get initial commit date
        initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date()
        commit_dates = []
        commit_count = 0

        # Add initial commit if it's from the selected year
        if initial_commit_date.year == selected_year:
            commit_dates.append(initial_commit_date)
            commit_count += 1

        # Get all commits
        commits = cached_list_commits(repo_id, repo_type)
        for commit in commits:
            commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date()
            if commit_date.year == selected_year:
                commit_dates.append(commit_date)
                commit_count += 1

        return commit_dates, commit_count
    except Exception:
        return [], 0


# Function to get commit events for a user (optimized)
def get_commit_events(username, kind=None, selected_year=None):
    commit_dates = []
    items_with_type = []
    kinds = [kind] if kind else ["model", "dataset", "space"]

    for k in kinds:
        try:
            items = cached_list_items(username, k)
            items_with_type.extend((item, k) for item in items)
            repo_ids = [item.id for item in items]

            # Optimized parallel fetch with chunking
            chunk_size = 5  # Process 5 repos at a time
            for i in range(0, len(repo_ids), chunk_size):
                chunk = repo_ids[i:i + chunk_size]
                with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
                    future_to_repo = {
                        executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id
                        for repo_id in chunk
                    }
                    for future in as_completed(future_to_repo):
                        repo_commits, repo_count = future.result()
                        if repo_commits:  # Only extend if we got commits
                            commit_dates.extend(repo_commits)
        except Exception as e:
            st.warning(f"Error fetching {k}s for {username}: {str(e)}")

    # Create DataFrame with all commits
    df = pd.DataFrame(commit_dates, columns=["date"])
    if not df.empty:
        df = df.drop_duplicates()  # Remove any duplicate dates
    return df, items_with_type


# Calendar heatmap function (optimized)
def make_calendar_heatmap(df, title, year):
    if df.empty:
        st.info(f"No {title.lower()} found for {year}.")
        return

    # Optimize DataFrame operations
    df["count"] = 1
    df = df.groupby("date", as_index=False).sum()
    df["date"] = pd.to_datetime(df["date"])

    # Create date range more efficiently
    start = pd.Timestamp(f"{year}-01-01")
    end = pd.Timestamp(f"{year}-12-31")
    all_days = pd.date_range(start=start, end=end)

    # Optimize DataFrame creation and merging
    heatmap_data = pd.DataFrame({"date": all_days, "count": 0})
    heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y"))
    heatmap_data["count"] = heatmap_data["count_y"].fillna(0)
    heatmap_data = heatmap_data.drop("count_y", axis=1)

    # Calculate week and day of week more efficiently
    heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek
    heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7

    # Create pivot table more efficiently
    pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0)

    # Optimize month labels calculation
    month_labels = pd.date_range(start, end, freq="MS").strftime("%b")
    month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7)

    # Create custom colormap with specific boundaries
    from matplotlib.colors import ListedColormap, BoundaryNorm
    colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39']  # GitHub-style green colors
    bounds = [0, 1, 3, 11, 31, float('inf')]  # Boundaries for color transitions
    cmap = ListedColormap(colors)
    norm = BoundaryNorm(bounds, cmap.N)

    # Create plot more efficiently
    fig, ax = plt.subplots(figsize=(12, 1.2))

    # Convert pivot values to integers to ensure proper color mapping
    pivot_int = pivot.astype(int)

    # Create heatmap with explicit vmin and vmax
    sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white",
                square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"])

    ax.set_title(f"{title}", fontsize=12, pad=10)
    ax.set_xlabel("")
    ax.set_ylabel("")
    ax.set_xticks(month_positions)
    ax.set_xticklabels(month_labels, fontsize=8)
    ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8)
    st.pyplot(fig)


# Function to create a fancy contribution radar chart
def create_contribution_radar(username, models_count, spaces_count, datasets_count, commits_count):
    # Create radar chart for contribution metrics
    categories = ['Models', 'Spaces', 'Datasets', 'Activity']
    values = [models_count, spaces_count, datasets_count, commits_count]
    
    # Normalize values for better visualization
    max_vals = [100, 100, 50, 500]  # Reasonable max values for each category
    normalized = [min(v/m, 1.0) for v, m in zip(values, max_vals)]
    
    # Create radar chart
    angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
    angles += angles[:1]  # Close the loop
    
    normalized += normalized[:1]  # Close the loop
    
    fig, ax = plt.subplots(figsize=(6, 6), subplot_kw={'polar': True})
    
    # Add background grid
    ax.set_theta_offset(np.pi / 2)
    ax.set_theta_direction(-1)
    ax.set_thetagrids(np.degrees(angles[:-1]), categories)
    
    # Draw the chart
    ax.fill(angles, normalized, color='#4CAF50', alpha=0.25)
    ax.plot(angles, normalized, color='#4CAF50', linewidth=2)
    
    # Add value labels
    for i, val in enumerate(values):
        angle = angles[i]
        x = normalized[i] * np.cos(angle)
        y = normalized[i] * np.sin(angle)
        ax.text(angle, normalized[i] + 0.05, str(val), 
                ha='center', va='center', fontsize=10, 
                fontweight='bold')
    
    ax.set_title(f"{username}'s Contribution Profile", fontsize=15, pad=20)
    
    return fig


# Function to create contribution distribution pie chart
def create_contribution_pie(model_commits, dataset_commits, space_commits):
    labels = ['Models', 'Datasets', 'Spaces']
    sizes = [model_commits, dataset_commits, space_commits]
    
    # Filter out zero values
    filtered_labels = [label for label, size in zip(labels, sizes) if size > 0]
    filtered_sizes = [size for size in sizes if size > 0]
    
    if not filtered_sizes:
        return None  # No data to show
    
    fig, ax = plt.subplots(figsize=(6, 6))
    colors = ['#FF9800', '#2196F3', '#4CAF50']
    filtered_colors = [color for color, size in zip(colors, sizes) if size > 0]
    
    # Create exploded pie chart
    explode = [0.05] * len(filtered_sizes)  # Explode all slices slightly
    
    ax.pie(filtered_sizes, labels=filtered_labels, colors=filtered_colors,
           autopct='%1.1f%%', startangle=90, shadow=True, explode=explode)
    ax.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle
    
    ax.set_title('Distribution of Contributions by Type', fontsize=15)
    
    return fig


# Function to create monthly activity chart
def create_monthly_activity(df, year):
    if df.empty:
        return None
    
    # Aggregate by month
    df['date'] = pd.to_datetime(df['date'])
    df['month'] = df['date'].dt.strftime('%b')
    monthly_counts = df.groupby('month')['date'].count().reindex(
        pd.date_range(start=f'{year}-01-01', end=f'{year}-12-31', freq='MS').strftime('%b')
    ).fillna(0)
    
    # Create bar chart
    fig, ax = plt.subplots(figsize=(12, 5))
    months = monthly_counts.index
    counts = monthly_counts.values
    
    bars = ax.bar(months, counts, color='#2196F3')
    
    # Highlight the month with most activity
    if counts.max() > 0:
        max_idx = counts.argmax()
        bars[max_idx].set_color('#FF5722')
    
    # Add labels and styling
    ax.set_title(f'Monthly Activity in {year}', fontsize=15)
    ax.set_xlabel('Month', fontsize=12)
    ax.set_ylabel('Number of Contributions', fontsize=12)
    
    # Add value labels on top of bars
    for i, count in enumerate(counts):
        if count > 0:
            ax.text(i, count + 0.5, str(int(count)), ha='center', fontsize=10)
    
    # Add grid for better readability
    ax.grid(axis='y', linestyle='--', alpha=0.7)
    
    plt.xticks(rotation=45)
    plt.tight_layout()
    
    return fig


# Function to render follower growth simulation
def simulate_follower_data(username, spaces_count, models_count, total_commits):
    # Simulate follower growth based on contribution metrics
    # This is just a simulation for visual purposes
    import numpy as np
    from datetime import timedelta
    
    # Start with a base number of followers proportional to contribution metrics
    base_followers = max(10, int((spaces_count * 2 + models_count * 3 + total_commits/10) / 6))
    
    # Generate timestamps for the past year
    end_date = datetime.now()
    start_date = end_date - timedelta(days=365)
    dates = pd.date_range(start=start_date, end=end_date, freq='W')  # Weekly data points
    
    # Generate follower growth with some randomness
    followers = []
    current = base_followers / 2  # Start from half the base
    
    for i in range(len(dates)):
        growth_factor = 1 + (np.random.random() * 0.1)  # Random growth between 0% and 10%
        current = current * growth_factor
        followers.append(int(current))
    
    # Ensure end value matches our base_followers estimate
    followers[-1] = base_followers
    
    # Create the chart
    fig, ax = plt.subplots(figsize=(12, 5))
    ax.plot(dates, followers, marker='o', linestyle='-', color='#9C27B0', markersize=5)
    
    # Add styling
    ax.set_title(f"Estimated Follower Growth for {username}", fontsize=15)
    ax.set_xlabel("Date", fontsize=12)
    ax.set_ylabel("Followers", fontsize=12)
    
    # Add grid for better readability
    ax.grid(True, linestyle='--', alpha=0.7)
    
    # Format date axis
    plt.xticks(rotation=45)
    plt.tight_layout()
    
    return fig


# Function to create ranking position visualization
def create_ranking_chart(username, overall_rank, spaces_rank, models_rank):
    if not (overall_rank or spaces_rank or models_rank):
        return None
    
    # Create a horizontal bar chart for rankings
    fig, ax = plt.subplots(figsize=(10, 4))
    
    categories = []
    positions = []
    colors = []
    
    if overall_rank:
        categories.append('Overall')
        positions.append(101 - overall_rank)  # Invert rank for visualization (higher is better)
        colors.append('#673AB7')
    
    if spaces_rank:
        categories.append('Spaces')
        positions.append(101 - spaces_rank)
        colors.append('#2196F3')
    
    if models_rank:
        categories.append('Models')
        positions.append(101 - models_rank)
        colors.append('#FF9800')
    
    # Create horizontal bars
    bars = ax.barh(categories, positions, color=colors, alpha=0.7)
    
    # Add rank values as text
    for i, bar in enumerate(bars):
        rank_val = 0
        if categories[i] == 'Overall': rank_val = overall_rank
        elif categories[i] == 'Spaces': rank_val = spaces_rank
        elif categories[i] == 'Models': rank_val = models_rank
        
        ax.text(bar.get_width() + 1, bar.get_y() + bar.get_height()/2, 
                f'Rank #{rank_val}', va='center', fontsize=10, fontweight='bold')
    
    # Set chart properties
    ax.set_xlim(0, 100)
    ax.set_title(f"Ranking Positions for {username} (Top 100)", fontsize=15)
    ax.set_xlabel("Percentile (higher is better)", fontsize=12)
    
    # Add a vertical line at 90th percentile to highlight top 10
    ax.axvline(x=90, color='red', linestyle='--', alpha=0.5)
    ax.text(91, 0.5, 'Top 10', color='red', fontsize=10, rotation=90, va='center')
    
    # Invert x-axis to show ranking position more intuitively
    ax.invert_xaxis()
    
    plt.tight_layout()
    return fig


# Import additional libraries for advanced visualizations
import numpy as np

# Fetch trending accounts with a loading spinner (do this once at the beginning)
with st.spinner("Loading trending accounts..."):
    trending_accounts, top_owners_spaces, top_owners_models = get_trending_accounts(limit=100)

# Sidebar
with st.sidebar:
    st.title("πŸ‘€ Contributor")
    
    # Create tabs for Spaces and Models rankings - ONLY SHOWING FIRST TWO TABS
    tab1, tab2 = st.tabs([
        "Top 100 Overall Contributors", 
        "Top 100 by Spaces & Models"
    ])
    
    with tab1:
        # Show combined trending accounts list
        st.subheader("πŸ”₯ Top 100 Overall Contributors")
        
        # Display the top 100 accounts list
        st.markdown("### Combined Contributors Ranking")
        
        # Create a data frame for the table
        if trending_accounts:
            # Create a mapping from username to Spaces and Models rankings
            spaces_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_spaces)}
            models_rank = {owner: idx+1 for idx, (owner, _) in enumerate(top_owners_models)}
            
            # Create the overall ranking dataframe
            overall_data = []
            for idx, username in enumerate(trending_accounts[:100]):
                # Use strings for all rankings to avoid type conversion issues
                spaces_position = str(spaces_rank.get(username, "-"))
                models_position = str(models_rank.get(username, "-"))
                overall_data.append([username, spaces_position, models_position])
            
            ranking_data_overall = pd.DataFrame(
                overall_data, 
                columns=["Contributor", "Spaces Rank", "Models Rank"]
            )
            ranking_data_overall.index = ranking_data_overall.index + 1  # Start index from 1 for ranking
            
            st.dataframe(
                ranking_data_overall,
                column_config={
                    "Contributor": st.column_config.TextColumn("Contributor"),
                    "Spaces Rank": st.column_config.TextColumn("Spaces Rank (top 100)"),
                    "Models Rank": st.column_config.TextColumn("Models Rank (top 100)")
                },
                use_container_width=True,
                hide_index=False
            )
    
    with tab2:
        # Show trending accounts list by Spaces
        st.subheader("πŸš€ Top 100 by Spaces & Models")
        
        # Display the top 100 accounts list
        st.markdown("### Spaces Contributors Ranking")
        
        # Create a data frame for the table
        if top_owners_spaces:
            ranking_data_spaces = pd.DataFrame(top_owners_spaces[:100], columns=["Contributor", "Spaces Count"])
            ranking_data_spaces.index = ranking_data_spaces.index + 1  # Start index from 1 for ranking
            
            st.dataframe(
                ranking_data_spaces,
                column_config={
                    "Contributor": st.column_config.TextColumn("Contributor"),
                    "Spaces Count": st.column_config.NumberColumn("Spaces Count (based on top 500 spaces)", format="%d")
                },
                use_container_width=True,
                hide_index=False
            )
        
        # Add stats expander with visualization
        with st.expander("View Top 30 Spaces Contributors Chart"):
            # Create a bar chart for top 30 contributors
            if top_owners_spaces:
                chart_data = pd.DataFrame(top_owners_spaces[:30], columns=["Owner", "Spaces Count"])
                
                fig, ax = plt.subplots(figsize=(10, 8))
                bars = ax.barh(chart_data["Owner"], chart_data["Spaces Count"])
                
                # Add color gradient to bars
                for i, bar in enumerate(bars):
                    bar.set_color(plt.cm.viridis(i/len(bars)))
                
                ax.set_title("Top 30 Contributors by Number of Spaces")
                ax.set_xlabel("Number of Spaces")
                plt.tight_layout()
                st.pyplot(fig)
        
        # Display the top 100 Models accounts list (ADDED SECTION)
        st.markdown("### Models Contributors Ranking")
        
        # Create a data frame for the Models table
        if top_owners_models:
            ranking_data_models = pd.DataFrame(top_owners_models[:100], columns=["Contributor", "Models Count"])
            ranking_data_models.index = ranking_data_models.index + 1  # Start index from 1 for ranking
            
            st.dataframe(
                ranking_data_models,
                column_config={
                    "Contributor": st.column_config.TextColumn("Contributor"),
                    "Models Count": st.column_config.NumberColumn("Models Count (based on top 500 models)", format="%d")
                },
                use_container_width=True,
                hide_index=False
            )
        
        # Add stats expander with visualization for Models (ADDED SECTION)
        with st.expander("View Top 30 Models Contributors Chart"):
            # Create a bar chart for top 30 models contributors
            if top_owners_models:
                chart_data = pd.DataFrame(top_owners_models[:30], columns=["Owner", "Models Count"])
                
                fig, ax = plt.subplots(figsize=(10, 8))
                bars = ax.barh(chart_data["Owner"], chart_data["Models Count"])
                
                # Add color gradient to bars
                for i, bar in enumerate(bars):
                    bar.set_color(plt.cm.plasma(i/len(bars)))  # Using a different colormap for distinction
                
                ax.set_title("Top 30 Contributors by Number of Models")
                ax.set_xlabel("Number of Models")
                plt.tight_layout()
                st.pyplot(fig)
    
    # Display trending accounts selection dropdown
    st.subheader("Select Contributor")
    selected_trending = st.selectbox(
        "Select trending account",
        options=trending_accounts[:100],  # Limit to top 100
        index=0 if trending_accounts else None,
        key="trending_selectbox"
    )
    
    # Custom account input option
    st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True)
    custom = st.text_input("Enter username/org", label_visibility="collapsed")
    
    # Set username based on selection or custom input
    if custom.strip():
        username = custom.strip()
    elif selected_trending:
        username = selected_trending
    else:
        username = "facebook"  # Default fallback
    
    # Year selection
    st.subheader("πŸ—“οΈ Time Period")
    year_options = list(range(datetime.now().year, 2017, -1))
    selected_year = st.selectbox("Select Year", options=year_options)
    
    # Additional options for customization
    st.subheader("βš™οΈ Display Options")
    show_models = st.checkbox("Show Models", value=True)
    show_datasets = st.checkbox("Show Datasets", value=True)
    show_spaces = st.checkbox("Show Spaces", value=True)

# Main Content
st.title("πŸ€— Hugging Face Contributions")

if username:
    with st.spinner(f"Fetching commit data for {username}..."):
        # Initialize variables for tracking
        overall_rank = None
        spaces_rank = None
        models_rank = None
        spaces_count = 0
        models_count = 0
        datasets_count = 0
        
        # Display contributor rank if in top 100
        if username in trending_accounts[:100]:
            overall_rank = trending_accounts.index(username) + 1
            st.success(f"πŸ† {username} is ranked #{overall_rank} in the top trending contributors!")
            
            # Find user in spaces ranking
            for i, (owner, count) in enumerate(top_owners_spaces):
                if owner == username:
                    spaces_rank = i+1
                    spaces_count = count
                    st.info(f"πŸš€ Spaces Ranking: #{spaces_rank} with {count} spaces")
                    break
            
            # Find user in models ranking
            for i, (owner, count) in enumerate(top_owners_models):
                if owner == username:
                    models_rank = i+1
                    models_count = count
                    st.info(f"🧠 Models Ranking: #{models_rank} with {count} models")
                    break
                    
            # Display combined ranking info
            combined_info = []
            if spaces_rank and spaces_rank <= 100:
                combined_info.append(f"Spaces: #{spaces_rank}")
            if models_rank and models_rank <= 100:
                combined_info.append(f"Models: #{models_rank}")
                
            if combined_info:
                st.success(f"Combined Rankings (Top 100): {', '.join(combined_info)}")
                
            # Add ranking visualization
            rank_chart = create_ranking_chart(username, overall_rank, spaces_rank, models_rank)
            if rank_chart:
                st.pyplot(rank_chart)
        
        # Create a dictionary to store commits by type
        commits_by_type = {}
        commit_counts_by_type = {}
        
        # Determine which types to fetch based on checkboxes
        types_to_fetch = []
        if show_models:
            types_to_fetch.append("model")
        if show_datasets:
            types_to_fetch.append("dataset")
        if show_spaces:
            types_to_fetch.append("space")
        
        if not types_to_fetch:
            st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)")
            st.stop()

        # Fetch commits for each selected type
        for kind in types_to_fetch:
            try:
                items = cached_list_items(username, kind)
                
                # Update counts for radar chart
                if kind == "model":
                    models_count = len(items)
                elif kind == "dataset":


items = cached_list_items(username, kind)
                
                # Update counts for radar chart
                if kind == "model":
                    models_count = len(items)
                elif kind == "dataset":
                    datasets_count = len(items)
                elif kind == "space":
                    spaces_count = len(items)
                    
                repo_ids = [item.id for item in items]
                
                st.info(f"Found {len(repo_ids)} {kind}s for {username}")

                # Process repos in chunks
                chunk_size = 5
                total_commits = 0
                all_commit_dates = []

                progress_bar = st.progress(0)
                for i in range(0, len(repo_ids), chunk_size):
                    chunk = repo_ids[i:i + chunk_size]
                    with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor:
                        future_to_repo = {
                            executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id
                            for repo_id in chunk
                        }
                        for future in as_completed(future_to_repo):
                            repo_commits, repo_count = future.result()
                            if repo_commits:
                                all_commit_dates.extend(repo_commits)
                                total_commits += repo_count
                    
                    # Update progress
                    progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids)))
                    progress_bar.progress(progress)
                
                # Complete progress
                progress_bar.progress(1.0)

                commits_by_type[kind] = all_commit_dates
                commit_counts_by_type[kind] = total_commits

            except Exception as e:
                st.warning(f"Error fetching {kind}s for {username}: {str(e)}")
                commits_by_type[kind] = []
                commit_counts_by_type[kind] = 0

        # Calculate total commits across all types
        total_commits = sum(commit_counts_by_type.values())

        st.subheader(f"{username}'s Activity in {selected_year}")
        
        # Profile information
        profile_col1, profile_col2 = st.columns([1, 3])
        with profile_col1:
            # Skip avatar image display since it's causing problems
            st.info(f"Profile: {username}")
            st.metric("Total Commits", total_commits)
            
            # Show contributor rank if in top owners
            for owner, count in top_owners_spaces:
                if owner.lower() == username.lower():
                    st.metric("Spaces Count", count)
                    break
            
            st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})")
        
        with profile_col2:
            # Display contribution radar chart
            radar_fig = create_contribution_radar(username, models_count, spaces_count, datasets_count, total_commits)
            st.pyplot(radar_fig)

        # Create DataFrame for all commits
        all_commits = []
        for commits in commits_by_type.values():
            all_commits.extend(commits)
        all_df = pd.DataFrame(all_commits, columns=["date"])
        if not all_df.empty:
            all_df = all_df.drop_duplicates()  # Remove any duplicate dates

        # Monthly activity chart
        st.subheader(f"Monthly Activity Pattern ({selected_year})")
        monthly_fig = create_monthly_activity(all_df, selected_year)
        if monthly_fig:
            st.pyplot(monthly_fig)
        else:
            st.info(f"No activity data available for {username} in {selected_year}")

        # Calendar heatmap for all commits
        st.subheader(f"Contribution Calendar ({selected_year})")
        make_calendar_heatmap(all_df, "All Commits", selected_year)
        
        # Contribution distribution pie chart
        st.subheader("Contribution Distribution by Type")
        model_commits = commit_counts_by_type.get("model", 0)
        dataset_commits = commit_counts_by_type.get("dataset", 0)
        space_commits = commit_counts_by_type.get("space", 0)
        
        pie_chart = create_contribution_pie(model_commits, dataset_commits, space_commits)
        if pie_chart:
            st.pyplot(pie_chart)
        else:
            st.info("No contribution data available to show distribution")
        
        # Follower growth simulation
        st.subheader(f"Follower Growth Simulation")
        st.caption("Based on contribution metrics - for visualization purposes only")
        follower_chart = simulate_follower_data(username, spaces_count, models_count, total_commits)
        st.pyplot(follower_chart)
        
        # Add analysis message
        if total_commits > 0:
            st.subheader("πŸ“Š Analytics Summary")
            
            # Contribution pattern analysis
            monthly_df = pd.DataFrame(all_commits, columns=["date"])
            monthly_df['date'] = pd.to_datetime(monthly_df['date'])
            monthly_df['month'] = monthly_df['date'].dt.month
            
            if not monthly_df.empty:
                most_active_month = monthly_df['month'].value_counts().idxmax()
                month_name = datetime(2020, most_active_month, 1).strftime('%B')
                
                st.markdown(f"""
                ### Activity Analysis for {username}
                
                - **Total Activity**: {total_commits} contributions in {selected_year}
                - **Most Active Month**: {month_name} with {monthly_df['month'].value_counts().max()} contributions
                - **Repository Breakdown**: {models_count} Models, {spaces_count} Spaces, {datasets_count} Datasets
                """)
                
                # Add ranking context if available
                if overall_rank:
                    percentile = 100 - overall_rank
                    st.markdown(f"""
                    ### Ranking Analysis
                    
                    - **Overall Ranking**: #{overall_rank} (Top {percentile}% of contributors)
                    """)
                    
                    if spaces_rank and spaces_rank <= 10:
                        st.markdown(f"- 🌟 **Elite Spaces Contributor**: Top 10 ({spaces_rank}) in Spaces contributions")
                    elif spaces_rank and spaces_rank <= 30:
                        st.markdown(f"- ✨ **Outstanding Spaces Contributor**: Top 30 ({spaces_rank}) in Spaces contributions")
                    
                    if models_rank and models_rank <= 10:
                        st.markdown(f"- 🌟 **Elite Models Contributor**: Top 10 ({models_rank}) in Models contributions")
                    elif models_rank and models_rank <= 30:
                        st.markdown(f"- ✨ **Outstanding Models Contributor**: Top 30 ({models_rank}) in Models contributions")
        
        # Metrics and heatmaps for each selected type
        st.subheader("Detailed Category Analysis")
        cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1)
        
        for i, (kind, emoji, label) in enumerate([
            ("model", "🧠", "Models"),
            ("dataset", "πŸ“¦", "Datasets"),
            ("space", "πŸš€", "Spaces")
        ]):
            if kind in types_to_fetch:
                with cols[types_to_fetch.index(kind)]:
                    try:
                        total = len(cached_list_items(username, kind))
                        commits = commits_by_type.get(kind, [])
                        commit_count = commit_counts_by_type.get(kind, 0)
                        df_kind = pd.DataFrame(commits, columns=["date"])
                        if not df_kind.empty:
                            df_kind = df_kind.drop_duplicates()  # Remove any duplicate dates
                        st.metric(f"{emoji} {label}", total)
                        st.metric(f"Commits in {selected_year}", commit_count)
                        make_calendar_heatmap(df_kind, f"{label} Commits", selected_year)
                    except Exception as e:
                        st.warning(f"Error processing {label}: {str(e)}")
                        st.metric(f"{emoji} {label}", 0)
                        st.metric(f"Commits in {selected_year}", 0)
                        make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year)
else:
    st.info("Please select an account from the sidebar to view contributions.")