# -------- app_final.py -------- import os, json, math, pathlib, re, time, logging, requests import numpy as np import plotly.graph_objects as go import gradio as gr import openai # ────────────────────────── # 0. API keys & Brave Search # ────────────────────────── if "OPENAI_API_KEY" not in os.environ: os.environ["OPENAI_API_KEY"] = input("🔑 Enter your OpenAI API key: ").strip() openai.api_key = os.environ["OPENAI_API_KEY"] BRAVE_KEY = os.getenv("BRAVE_KEY", "") # Brave Search API Key BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search" logging.basicConfig(level=logging.INFO) # ────────────────────────── # 1. Cycle config # ────────────────────────── CENTER = 2025 CYCLES = { "K-Wave": 50, # Kondratiev long wave "Business": 9, # Juglar investment cycle "Finance": 80, # Long credit cycle "Hegemony": 250 # Power-shift cycle } ORDERED_PERIODS = sorted(CYCLES.values()) # [9, 50, 80, 250] COLOR = {9:"#66ff66", 50:"#ff3333", 80:"#ffcc00", 250:"#66ccff"} AMPL = {9:0.6, 50:1.0, 80:1.6, 250:4.0} PERIOD_BY_CYCLE = {k:v for k,v in CYCLES.items()} # ────────────────────────── # 2. Load events JSON # ────────────────────────── EVENTS_PATH = pathlib.Path(__file__).with_name("cycle_events.json") with open(EVENTS_PATH, encoding="utf-8") as f: EVENTS = {int(item["year"]): item["events"] for item in json.load(f)} # ────────────────────────── # 3. Brave Search helpers # ────────────────────────── def brave_search(query: str, count: int = 8): """Call Brave Search API; return list of dicts.""" if not BRAVE_KEY: logging.warning("⚠️ BRAVE_KEY is empty; web search disabled.") return [] try: hdrs = { "Accept": "application/json", "X-Subscription-Token": BRAVE_KEY } data = requests.get( BRAVE_ENDPOINT, headers=hdrs, params={"q": query, "count": str(count)}, timeout=15 ).json() raw = data.get("web", {}).get("results") or [] return [ { "title": r.get("title", ""), "url": r.get("url", r.get("link", "")), "snippet": r.get("description", r.get("text", "")), "host": re.sub(r"https?://(www\.)?", "", r.get("url", "")).split("/")[0] } for r in raw[:count] ] except Exception as e: logging.error(f"Brave Search Error: {e}") return [] def format_search_results(query: str) -> str: """Format search results as markdown for LLM context.""" arts = brave_search(query) if not arts: return f"# [Web-Search] No live results for “{query}”.\n" hdr = f"# [Web-Search] Top results for “{query}”\n\n" body = "\n".join( f"**{i+1}. {a['title']}** ({a['host']})\n\n" f"{a['snippet']}\n\n" f"[Source]({a['url']})\n" for i, a in enumerate(arts) ) return hdr + body + "\n" # ────────────────────────── # 4. Helper functions (chart) # ────────────────────────── def half_sine(xs, period, amp): """Half-sine ‘tower’ with zero bottom floor.""" phase = np.mod(xs - CENTER, period) y = amp * np.sin(np.pi * phase / period) y[y < 0] = 0 return y def build_chart(start: int, end: int): """Return (Plotly figure, summary string) for the requested year range, plus a transparent hover-trace so the cursor always shows ‘Year ####’. """ xs = np.linspace(start, end, max(1000, (end - start) * 4)) fig = go.Figure() # 1) Gradient half-sine towers for period in ORDERED_PERIODS: base_amp, color = AMPL[period], COLOR[period] for frac in np.linspace(base_amp / 30, base_amp, 30): fig.add_trace(go.Scatter( x=xs, y=half_sine(xs, period, frac), mode="lines", line=dict(color=color, width=0.8), opacity=0.6, hoverinfo="skip", showlegend=False)) fig.add_trace(go.Scatter( x=xs, y=half_sine(xs, period, base_amp), mode="lines", line=dict(color=color, width=1.6), hoverinfo="skip", showlegend=False)) # 2) Event markers (bilingual hover) for year, evs in EVENTS.items(): if start <= year <= end: cyc = evs[0]["cycle"]; period = PERIOD_BY_CYCLE[cyc] y_val = float(half_sine(np.array([year]), period, AMPL[period])) fig.add_trace(go.Scatter( x=[year], y=[y_val], mode="markers", marker=dict(color="white", size=6), customdata=[[cyc, "
".join(e["event_en"] for e in evs), "
".join(e["event_ko"] for e in evs)]], hovertemplate=( "Year %{x} • %{customdata[0]} cycle" "
%{customdata[1]}" "
%{customdata[2]}" ), showlegend=False)) # 3) Transparent hover-trace so any x shows ‘Year ####’ fig.add_trace(go.Scatter( x=xs, y=np.full_like(xs, -0.05), # just below baseline mode="lines", line=dict(color="rgba(0,0,0,0)", width=1), # invisible hovertemplate="Year %{x:.0f}", showlegend=False)) # 4) Cosmetic touches: centre line & 250-yr arrow fig.add_vline(x=CENTER, line_dash="dash", line_color="white", opacity=0.6) arrow_y = AMPL[250] * 1.05 fig.add_annotation( x=CENTER-125, y=arrow_y, ax=CENTER+125, ay=arrow_y, xref="x", yref="y", axref="x", ayref="y", showarrow=True, arrowhead=3, arrowsize=1, arrowwidth=1.2, arrowcolor="white") fig.add_annotation( x=CENTER, y=arrow_y+0.15, text="250 yr", showarrow=False, font=dict(color="white", size=10)) # 5) Layout fig.update_layout( template="plotly_dark", paper_bgcolor="black", plot_bgcolor="black", height=450, margin=dict(t=30, l=40, r=40, b=40), hoverlabel=dict(bgcolor="#222", font_size=11), hovermode="x" # unified x-hover ) fig.update_xaxes(title="Year", range=[start, end], showgrid=False) fig.update_yaxes(title="Relative amplitude", showticklabels=False, showgrid=False) summary = f"Range {start}-{end} | Events plotted: " \ f"{sum(1 for y in EVENTS if start <= y <= end)}" return fig, summary # ────────────────────────── # 5. GPT chat helper # ────────────────────────── BASE_PROMPT = ( "당신은 **CycleNavigator AI**로, 경제사·국제정치·장주기(9y Business, 50y K-Wave, " "80y Finance, 250y Hegemony) 분석에 정통한 전문가입니다. " "모든 답변은 한국어로 하되 학술적 정확성과 실무적 명료성을 동시에 갖추십시오. " "✦ 답변 구조 지침: ① 질문 핵심 요약 → ② 4대 주기와의 관련성 명시 → " "③ 역사·데이터 근거 설명 → ④ 시사점·전망 순으로 서술하며, " "번호‧글머리표·짧은 문단을 활용해 논리적으로 배열합니다. " "✦ 제공된 [Chart summary]는 반드시 해석·인용하고, " "객관적 사실·연도·사건을 근거로 합니다. " "✦ 근거가 불충분할 땐 ‘확실하지 않습니다’라고 명시해 추측을 피하십시오. " "✦ 불필요한 장황함은 삼가고 3개 단락 또는 7개 이하 bullets 내로 요약하십시오." ) def chat_with_gpt(history, user_msg, chart_summary): messages = [{"role": "system", "content": BASE_PROMPT}] if chart_summary not in ("", "No chart yet."): messages.append({"role": "system", "content": f"[Chart summary]\n{chart_summary}"}) for u, a in history: messages.extend([{"role": "user", "content": u}, {"role": "assistant", "content": a}]) messages.append({"role": "user", "content": user_msg}) res = openai.chat.completions.create( model="gpt-3.5-turbo", messages=messages, max_tokens=600, temperature=0.7 ) return res.choices[0].message.content.strip() # ────────────────────────── # 6. Gradio UI # ────────────────────────── def create_app(): with gr.Blocks(theme=gr.themes.Soft()) as demo: # Title & subtitles gr.Markdown("## 🔭 **CycleNavigator (Interactive)**") gr.Markdown( "### Interactive visual service delivering insights at a glance into " "the four major long cycles—9-year business cycle, 50-year Kondratiev wave, " "80-year financial credit cycle, and 250-year hegemony cycle—through dynamic " "charts and AI chat." ) gr.Markdown( "" "Business 9y (credit-investment business cycle) • " "K-Wave 50y (long technological-industrial wave) • " "Finance 80y (long credit-debt cycle) • " "Hegemony 250y (rise & fall of global powers cycle)" "" ) chart_summary_state = gr.State(value="No chart yet.") with gr.Tabs(): with gr.TabItem("Timeline Chart"): # 1️⃣ 먼저 차트를 만들고 화면에 배치 fig0, summ0 = build_chart(1500, 2500) plot = gr.Plot(value=fig0) # ⬆️ 차트가 맨 위에 위치 chart_summary_state.value = summ0 # 2️⃣ 차트 아래에 컨트롤(연도 입력 + 줌 버튼) 배치 with gr.Row(): start_year = gr.Number(label="Start Year", value=1500, precision=0) end_year = gr.Number(label="End Year", value=2500, precision=0) zoom_in = gr.Button("🔍 Zoom In") zoom_out = gr.Button("🔎 Zoom Out") def refresh(s, e): fig, summ = build_chart(int(s), int(e)) return fig, summ start_year.change(refresh, [start_year, end_year], [plot, chart_summary_state]) end_year.change(refresh, [start_year, end_year], [plot, chart_summary_state]) def zoom(s, e, factor): mid = (s + e) / 2 span = (e - s) * factor / 2 ns, ne = int(mid - span), int(mid + span) fig, summ = build_chart(ns, ne) return ns, ne, fig, summ zoom_in.click(lambda s, e: zoom(s, e, 0.5), inputs=[start_year, end_year], outputs=[start_year, end_year, plot, chart_summary_state]) zoom_out.click(lambda s, e: zoom(s, e, 2.0), inputs=[start_year, end_year], outputs=[start_year, end_year, plot, chart_summary_state]) gr.File(value=str(EVENTS_PATH), label="Download cycle_events.json") # ── Tab 2: GPT Chat ── with gr.TabItem("Deep Research Chat"): chatbot = gr.Chatbot(label="Assistant") user_input = gr.Textbox(lines=3, placeholder="메시지를 입력하세요…") with gr.Row(): send_btn = gr.Button("Send", variant="primary") web_btn = gr.Button("🔎 Web Search") # NEW # 기본 답변 def respond(history, msg, summ): reply = chat_with_gpt(history, msg, summ) history.append((msg, reply)) return history, gr.Textbox(value="") # 웹 검색 후 답변 def respond_with_search(history, msg, summ): search_md = format_search_results(msg) combined = f"{msg}\n\n{search_md}" reply = chat_with_gpt(history, combined, summ) history.append((f"{msg}\n\n(웹검색 실행)", reply)) return history, gr.Textbox(value="") send_btn.click(respond, [chatbot, user_input, chart_summary_state], [chatbot, user_input]) user_input.submit(respond, [chatbot, user_input, chart_summary_state], [chatbot, user_input]) web_btn.click(respond_with_search, [chatbot, user_input, chart_summary_state], [chatbot, user_input]) return demo # ────────────────────────── # 7. main # ────────────────────────── if __name__ == "__main__": create_app().launch()