# -------- app_final.py --------
import os, json, math, pathlib, re, time, logging, requests
from datetime import datetime, timedelta
import numpy as np
import pandas as pd
import plotly.graph_objects as go
import gradio as gr
import openai
import torch
from sentence_transformers import SentenceTransformer, util
# ────────────────────────── 0. API keys & Brave Search ──────────────────────────
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = input("🔑 Enter your OpenAI API key: ").strip()
openai.api_key = os.environ["OPENAI_API_KEY"]
BRAVE_KEY = os.getenv("BRAVE_KEY", "")
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
logging.basicConfig(level=logging.INFO)
# ────────────────────────── 1. Cycle config ──────────────────────────
CENTER = 2025
CYCLES = { "K-Wave": 50, "Business": 9, "Finance": 80, "Hegemony": 250 }
ORDERED_PERIODS = sorted(CYCLES.values())
COLOR = {9:"#66ff66", 50:"#ff3333", 80:"#ffcc00", 250:"#66ccff"}
AMPL = {9:0.6, 50:1.0, 80:1.6, 250:4.0}
PERIOD_BY_CYCLE = {k:v for k,v in CYCLES.items()}
# ────────────────────────── 2. Load events JSON & embeddings ───────────────────
EVENTS_PATH = pathlib.Path(__file__).with_name("cycle_events.json")
with open(EVENTS_PATH, encoding="utf-8") as f:
RAW_EVENTS = json.load(f)
EVENTS = {int(item["year"]): item["events"] for item in RAW_EVENTS}
logging.info("Embedding historical events…")
_embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
_all_sentences = [(yr, ev["event_en"]) for yr, evs in EVENTS.items() for ev in evs]
_embeddings = _embed_model.encode([s for _, s in _all_sentences], convert_to_tensor=True)
# 유사 사건 top-3 year 사전
SIMILAR_MAP = {}
for idx, (yr, _) in enumerate(_all_sentences):
scores = util.cos_sim(_embeddings[idx], _embeddings)[0]
top_idx = torch.topk(scores, 4).indices.tolist()
sims = [_all_sentences[i][0] for i in top_idx if _all_sentences[i][0] != yr][:3]
SIMILAR_MAP.setdefault(yr, sims)
# ────────────────────────── 3. Brave Search helpers ──────────────────────────
def brave_search(query: str, count: int = 8, freshness_days: int | None = None):
if not BRAVE_KEY:
return []
params = {"q": query, "count": str(count)}
if freshness_days:
dt_from = (datetime.utcnow() - timedelta(days=freshness_days)).strftime("%Y-%m-%d")
params["freshness"] = dt_from
try:
r = requests.get(
BRAVE_ENDPOINT,
headers={"Accept": "application/json", "X-Subscription-Token": BRAVE_KEY},
params=params,
timeout=15
)
raw = r.json().get("web", {}).get("results") or []
return [{
"title": r.get("title", ""),
"url": r.get("url", r.get("link", "")),
"snippet": r.get("description", r.get("text", "")),
"host": re.sub(r"https?://(www\.)?", "", r.get("url", "")).split("/")[0]
} for r in raw[:count]]
except Exception as e:
logging.error(f"Brave error: {e}")
return []
def format_search_results(query: str) -> str:
rows = brave_search(query, 6, freshness_days=3)
if not rows:
return f"# [Web-Search] No live results for “{query}”.\n"
hdr = f"# [Web-Search] Top results for “{query}” (last 3 days)\n\n"
body = "\n".join(
f"- **{r['title']}** ({r['host']})\n {r['snippet']}\n [link]({r['url']})"
for r in rows
)
return hdr + body + "\n"
NEWS_KEYWORDS = {
"Business": "recession OR GDP slowdown",
"K-Wave": "breakthrough technology innovation",
"Finance": "credit cycle debt crisis",
"Hegemony": "great power rivalry geopolitics"
}
def fetch_cycle_news():
markers = []
for cyc, kw in NEWS_KEYWORDS.items():
res = brave_search(kw, 1, freshness_days=2)
if res:
markers.append({
"cycle": cyc,
"title": res[0]["title"],
"year": datetime.utcnow().year,
"url": res[0]["url"]
})
return markers
NEWS_MARKERS = fetch_cycle_news()
# ────────────────────────── 4. Chart helpers ──────────────────────────
def half_sine(xs, period, amp):
phase = np.mod(xs - CENTER, period)
y = amp * np.sin(np.pi * phase / period)
y[y < 0] = 0
return y
def build_chart(start: int, end: int, lang: str = "KO"):
xs = np.linspace(start, end, max(1000, (end - start) * 4))
fig = go.Figure()
# Gradient towers
for period in ORDERED_PERIODS:
base, col = AMPL[period], COLOR[period]
for frac in np.linspace(base / 30, base, 30):
fig.add_trace(go.Scatter(
x=xs, y=half_sine(xs, period, frac),
mode="lines", line=dict(color=col, width=0.8),
opacity=0.6, hoverinfo="skip", showlegend=False))
fig.add_trace(go.Scatter(
x=xs, y=half_sine(xs, period, base),
mode="lines", line=dict(color=col, width=1.6),
hoverinfo="skip", showlegend=False))
# Events + similar
text_key = "event_ko" if lang == "KO" else "event_en"
for yr, evs in EVENTS.items():
if start <= yr <= end:
cyc = evs[0]["cycle"]
period = PERIOD_BY_CYCLE[cyc]
yv = float(half_sine(np.array([yr]), period, AMPL[period]))
sim = ", ".join(map(str, SIMILAR_MAP.get(yr, []))) or "None"
txt = "
".join(e[text_key] for e in evs)
fig.add_trace(go.Scatter(
x=[yr], y=[yv], mode="markers",
marker=dict(color="white", size=6),
customdata=[[cyc, txt, sim]],
hovertemplate=(
"Year %{x} • %{customdata[0]}
"
"%{customdata[1]}
"
"Similar: %{customdata[2]}"
),
showlegend=False))
# Live-news markers
for m in NEWS_MARKERS:
if start <= m["year"] <= end:
p = PERIOD_BY_CYCLE[m["cycle"]]
yv = float(half_sine(np.array([m["year"]]), p, AMPL[p])) * 1.05
fig.add_trace(go.Scatter(
x=[m["year"]], y=[yv], mode="markers+text",
marker=dict(color="gold", size=8, symbol="star"),
text=["📰"], textposition="top center",
customdata=[[m["cycle"], m["title"], m["url"]]],
hovertemplate=("Live news • %{customdata[0]}
"
"%{customdata[1]}"),
showlegend=False))
# Hover Year trace
fig.add_trace(go.Scatter(
x=xs, y=np.full_like(xs, -0.05),
mode="lines", line=dict(color="rgba(0,0,0,0)", width=1),
hovertemplate="Year %{x:.0f}", showlegend=False))
# Cosmetics
fig.add_vline(x=CENTER, line_dash="dash", line_color="white", opacity=0.6)
arrow_y = AMPL[250] * 1.05
fig.add_annotation(
x=CENTER - 125, y=arrow_y, ax=CENTER + 125, ay=arrow_y,
xref="x", yref="y", axref="x", ayref="y",
showarrow=True, arrowhead=3, arrowsize=1,
arrowwidth=1.2, arrowcolor="white")
fig.add_annotation(
x=CENTER, y=arrow_y + 0.15, text="250 yr",
showarrow=False, font=dict(color="white", size=10))
fig.update_layout(
template="plotly_dark",
paper_bgcolor="black", plot_bgcolor="black",
height=500, margin=dict(t=30, l=40, r=40, b=40),
hoverlabel=dict(bgcolor="#222", font_size=11),
hovermode="x")
fig.update_xaxes(title="Year", range=[start, end], showgrid=False)
fig.update_yaxes(title="Relative amplitude", showticklabels=False, showgrid=False)
summary = f"Range {start}-{end} | Events: {sum(1 for y in EVENTS if start <= y <= end)}"
return fig, summary
# ────────────────────────── 5. GPT helper ──────────────────────────
BASE_PROMPT = (
"당신은 **CycleNavigator AI**로, 경제사·국제정치·장주기(9y Business, 50y K-Wave, "
"80y Finance, 250y Hegemony) 분석에 정통한 전문가입니다. "
"모든 답변은 한국어로 하되 학술적 정확성과 실무적 명료성을 동시에 갖추십시오. "
"✦ 답변 구조 지침: ① 질문 핵심 요약 → ② 4대 주기와의 관련성 명시 → "
"③ 역사·데이터 근거 설명 → ④ 시사점·전망 순으로 서술하며, "
"번호‧글머리표·짧은 문단을 활용해 논리적으로 배열합니다. "
"✦ 제공된 [Chart summary]는 반드시 해석·인용하고, "
"객관적 사실·연도·사건을 근거로 합니다. "
"✦ 근거가 불충분할 땐 ‘확실하지 않습니다’라고 명시해 추측을 피하십시오. "
"✦ 불필요한 장황함은 삼가고 3개 단락 또는 7개 이하 bullets 내로 요약하십시오."
)
def chat_with_gpt(hist, msg, chart_summary):
msgs = [{"role": "system", "content": BASE_PROMPT}]
if chart_summary not in ("", "No chart yet."):
msgs.append({"role": "system", "content": f"[Chart summary]\n{chart_summary}"})
for u, a in hist:
msgs.extend([{"role": "user", "content": u}, {"role": "assistant", "content": a}])
msgs.append({"role": "user", "content": msg})
return openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=msgs,
max_tokens=600,
temperature=0.7
).choices[0].message.content.strip()
# ────────────────────────── 6. Gradio UI ──────────────────────────
def create_app():
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
#discord-badge{position:fixed; bottom:10px; left:50%;
transform:translateX(-50%);}
"""
) as demo:
gr.Markdown("## 🔭 **CycleNavigator (Interactive)**")
gr.Markdown(
""
"Interactive visual service delivering insights at a glance into the four major long cycles— "
"Business 9y (credit-investment business cycle) • "
"K-Wave 50y (long technological-industrial wave) • "
"Finance 80y (long credit-debt cycle) • "
"Hegemony 250y (rise & fall of global powers cycle)"
" —through dynamic charts and AI chat."
""
)
# ── 언어 선택 ───────────────────────────────────────────
# ── 언어 선택 ───────────────────────────────────────────
lang_state = gr.State(value="EN") # ① 기본을 EN으로
lang_radio = gr.Radio(
["English", "한국어"],
value="English",
label="Language / 언어",
interactive=True
)
# 초기 차트·상태 ─────────────────────────────────────────
chart_summary_state = gr.State(value="No chart yet.")
fig0, summ0 = build_chart(1500, 2500, lang_state.value) # ② 동일 상태값 사용
plot = gr.Plot(value=fig0)
chart_summary_state.value = summ0
with gr.Row():
start_year = gr.Number(label="Start Year", value=1500, precision=0)
end_year = gr.Number(label="End Year", value=2500, precision=0)
zoom_in = gr.Button("🔍 Zoom In")
zoom_out = gr.Button("🔎 Zoom Out")
# ── functions ──
def refresh(s, e, lang_code):
fig, summ = build_chart(int(s), int(e), lang_code)
return fig, summ
def zoom(s, e, f, lang_code):
mid = (s + e) / 2
span = (e - s) * f / 2
ns, ne = int(mid - span), int(mid + span)
fig, summ = build_chart(ns, ne, lang_code)
return ns, ne, fig, summ
def change_lang(lang_label, s, e):
code = "KO" if lang_label == "한국어" else "EN"
fig, summ = build_chart(int(s), int(e), code)
return code, fig, summ
# ── event wiring ──
start_year.change(refresh, [start_year, end_year, lang_state], [plot, chart_summary_state])
end_year.change(refresh, [start_year, end_year, lang_state], [plot, chart_summary_state])
zoom_in.click(
lambda s, e, lc: zoom(s, e, 0.5, lc),
[start_year, end_year, lang_state],
[start_year, end_year, plot, chart_summary_state]
)
zoom_out.click(
lambda s, e, lc: zoom(s, e, 2.0, lc),
[start_year, end_year, lang_state],
[start_year, end_year, plot, chart_summary_state]
)
lang_radio.change(
change_lang,
[lang_radio, start_year, end_year],
[lang_state, plot, chart_summary_state]
)
gr.File(value=str(EVENTS_PATH), label="Download cycle_events.json")
with gr.Tabs():
with gr.TabItem("Deep Research Chat"):
chatbot = gr.Chatbot(label="Assistant")
user_input = gr.Textbox(lines=3, placeholder="메시지를 입력하세요…")
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
web_btn = gr.Button("🔎 Web Search")
def respond(hist, msg, summ):
reply = chat_with_gpt(hist, msg, summ)
hist.append((msg, reply))
return hist, gr.Textbox(value="")
def respond_ws(hist, msg, summ):
md = format_search_results(msg)
reply = chat_with_gpt(hist, f"{msg}\n\n{md}", summ)
hist.append((f"{msg}\n\n(웹검색)", reply))
return hist, gr.Textbox(value="")
send_btn.click(respond,
[chatbot, user_input, chart_summary_state],
[chatbot, user_input])
user_input.submit(respond,
[chatbot, user_input, chart_summary_state],
[chatbot, user_input])
web_btn.click(respond_ws,
[chatbot, user_input, chart_summary_state],
[chatbot, user_input])
# ── fixed Discord badge ──
gr.HTML(
''
'
'
)
return demo
# ────────────────────────── main ──────────────────────────
if __name__ == "__main__":
create_app().launch()