DreamO-video / app.py
openfree's picture
Update app.py
b61aa6d verified
raw
history blame
25.6 kB
import spaces
import argparse
import os
import shutil
import cv2
import gradio as gr
import numpy as np
import torch
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
import huggingface_hub
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms.functional import normalize
from dreamo.dreamo_pipeline import DreamOPipeline
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img, resize_numpy_image_long
from tools import BEN2
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, default=8080)
parser.add_argument('--no_turbo', action='store_true')
args = parser.parse_args()
huggingface_hub.login(os.getenv('HF_TOKEN'))
try:
shutil.rmtree('gradio_cached_examples')
except FileNotFoundError:
print("cache folder not exist")
class Generator:
def __init__(self):
device = torch.device('cuda')
# preprocessing models
# background remove model: BEN2
self.bg_rm_model = BEN2.BEN_Base().to(device).eval()
hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
# face crop and align tool: facexlib
self.face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
device=device,
)
# load dreamo
model_root = 'black-forest-labs/FLUX.1-dev'
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
dreamo_pipeline.load_dreamo_model(device, use_turbo=not args.no_turbo)
self.dreamo_pipeline = dreamo_pipeline.to(device)
@torch.no_grad()
def get_align_face(self, img):
# the face preprocessing code is same as PuLID
self.face_helper.clean_all()
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
self.face_helper.read_image(image_bgr)
self.face_helper.get_face_landmarks_5(only_center_face=True)
self.face_helper.align_warp_face()
if len(self.face_helper.cropped_faces) == 0:
return None
align_face = self.face_helper.cropped_faces[0]
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
input = input.to(torch.device("cuda"))
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
bg = sum(parsing_out == i for i in bg_label).bool()
white_image = torch.ones_like(input)
# only keep the face features
face_features_image = torch.where(bg, white_image, input)
face_features_image = tensor2img(face_features_image, rgb2bgr=False)
return face_features_image
generator = Generator()
@spaces.GPU
@torch.inference_mode()
def generate_image(
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt,
seed,
width=1024,
height=1024,
ref_res=512,
num_steps=12,
guidance=3.5,
true_cfg=1,
cfg_start_step=0,
cfg_end_step=0,
neg_prompt='',
neg_guidance=3.5,
first_step_guidance=0,
):
print(prompt)
ref_conds = []
debug_images = []
ref_images = [ref_image1, ref_image2]
ref_tasks = [ref_task1, ref_task2]
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
if ref_image is not None:
if ref_task == "id":
ref_image = resize_numpy_image_long(ref_image, 1024)
ref_image = generator.get_align_face(ref_image)
elif ref_task != "style":
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image))
if ref_task != "id":
ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res)
debug_images.append(ref_image)
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0
ref_image = 2 * ref_image - 1.0
ref_conds.append(
{
'img': ref_image,
'task': ref_task,
'idx': idx + 1,
}
)
seed = int(seed)
if seed == -1:
seed = torch.Generator(device="cpu").seed()
image = generator.dreamo_pipeline(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_steps,
guidance_scale=guidance,
ref_conds=ref_conds,
generator=torch.Generator(device="cpu").manual_seed(seed),
true_cfg_scale=true_cfg,
true_cfg_start_step=cfg_start_step,
true_cfg_end_step=cfg_end_step,
negative_prompt=neg_prompt,
neg_guidance_scale=neg_guidance,
first_step_guidance_scale=first_step_guidance if first_step_guidance > 0 else guidance,
).images[0]
return image, debug_images, seed
# -----------------------------
# (1) 여기에 영상 API 호출을 위한 추가 코드
# -----------------------------
import requests
import random
import tempfile
import subprocess
from gradio_client import Client, handle_file
# 예시: 원격 서버 Endpoint (필요하다면 수정)
REMOTE_ENDPOINT = os.getenv("H100_URL")
client = Client(REMOTE_ENDPOINT)
def run_process_video_api(image_path: str, prompt: str, video_length: float = 2.0):
"""
원격 /process 엔드포인트 호출하여 영상을 생성.
(예시: prompt, negative_prompt, seed 등은 하드코딩하거나 원하는대로 조정 가능)
"""
# 랜덤 시드
seed_val = random.randint(0, 9999999)
# negative_prompt = "" 등 고정
negative_prompt = ""
use_teacache = True
# /process 호출 (gradio_client)
result = client.predict(
input_image=handle_file(image_path),
prompt=prompt,
n_prompt=negative_prompt,
seed=seed_val,
use_teacache=use_teacache,
video_length=video_length,
api_name="/process",
)
# result는 (video_dict, preview_dict, md_text, html_text) 구조
video_dict, preview_dict, md_text, html_text = result
video_path = video_dict.get("video") if isinstance(video_dict, dict) else None
return video_path
def add_watermark_to_video(input_video_path: str, watermark_text="Ginigen.com") -> str:
"""
FFmpeg로 영상에 오른쪽 하단 워터마크를 추가한 새 영상을 리턴
"""
if not os.path.exists(input_video_path):
raise FileNotFoundError(f"Input video not found: {input_video_path}")
# 출력 경로
base, ext = os.path.splitext(input_video_path)
watermarked_path = base + "_wm" + ext
# ffmpeg 명령어 구성
# - y: 덮어쓰기
# drawtext 필터로 오른쪽 하단(x=w-tw-10, y=h-th-10)에 boxcolor=black 반투명 박스
cmd = [
"ffmpeg", "-y",
"-i", input_video_path,
"-vf", f"drawtext=fontsize=20:fontcolor=white:text='{watermark_text}':x=w-tw-10:y=h-th-10:box=1:[email protected]:boxborderw=5",
"-codec:a", "copy",
watermarked_path
]
try:
subprocess.run(cmd, check=True)
except Exception as e:
print(f"[WARN] FFmpeg watermark failed: {e}")
return input_video_path # 실패 시 원본 반환
return watermarked_path
def generate_video_from_image(image_array: np.ndarray):
"""
1) Numpy 이미지를 임시 파일로 저장
2) 원격 API로 2초 영상 생성 (기본 prompt 고정)
3) FFmpeg로 'Ginigen.com' 워터마크 추가
4) 최종 mp4 경로 반환
"""
if image_array is None:
raise gr.Error("이미지가 없습니다.")
# (1) 임시 파일로 저장
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as fp:
temp_img_path = fp.name
Image.fromarray(image_array).save(temp_img_path, format="PNG")
# (2) 원격 API 호출
default_video_prompt = "Generate a video with smooth and natural movement. Objects should have visible motion while maintaining fluid transitions."
result_video_path = run_process_video_api(
image_path=temp_img_path,
prompt=default_video_prompt,
video_length=2.0,
)
if result_video_path is None:
raise gr.Error("영상 API 호출 실패 또는 결과 없음")
# (3) FFmpeg 워터마크 추가
final_video = add_watermark_to_video(result_video_path, watermark_text="Ginigen.com")
return final_video
# -----------------------------
# Custom CSS, Headers, etc.
# -----------------------------
_CUSTOM_CSS_ = """
:root {
--primary-color: #f8c3cd; /* Sakura pink - primary accent */
--secondary-color: #b3e5fc; /* Pastel blue - secondary accent */
--background-color: #f5f5f7; /* Very light gray background */
--card-background: #ffffff; /* White for cards */
--text-color: #424242; /* Dark gray for text */
--accent-color: #ffb6c1; /* Light pink for accents */
--success-color: #c8e6c9; /* Pastel green for success */
--warning-color: #fff9c4; /* Pastel yellow for warnings */
--shadow-color: rgba(0, 0, 0, 0.1); /* Shadow color */
--border-radius: 12px; /* Rounded corners */
}
body {
background-color: var(--background-color) !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
}
.gradio-container {
max-width: 1200px !important;
margin: 0 auto !important;
}
/* Header styling */
h1 {
color: #9c27b0 !important;
font-weight: 800 !important;
text-shadow: 2px 2px 4px rgba(156, 39, 176, 0.2) !important;
letter-spacing: -0.5px !important;
}
/* Card styling for panels */
.panel-box {
border-radius: var(--border-radius) !important;
box-shadow: 0 8px 16px var(--shadow-color) !important;
background-color: var(--card-background) !important;
border: none !important;
overflow: hidden !important;
padding: 20px !important;
margin-bottom: 20px !important;
}
/* Button styling */
button.gr-button {
background: linear-gradient(135deg, var(--primary-color), #e1bee7) !important;
border-radius: var(--border-radius) !important;
color: #4a148c !important;
font-weight: 600 !important;
border: none !important;
padding: 10px 20px !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
}
button.gr-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 10px rgba(0, 0, 0, 0.15) !important;
background: linear-gradient(135deg, #e1bee7, var(--primary-color)) !important;
}
/* Input fields styling */
input, select, textarea, .gr-input {
border-radius: 8px !important;
border: 2px solid #e0e0e0 !important;
padding: 10px 15px !important;
transition: all 0.3s ease !important;
background-color: #fafafa !important;
}
input:focus, select:focus, textarea:focus, .gr-input:focus {
border-color: var(--primary-color) !important;
box-shadow: 0 0 0 3px rgba(248, 195, 205, 0.3) !important;
}
/* Slider styling */
.gr-form input[type=range] {
appearance: none !important;
width: 100% !important;
height: 6px !important;
background: #e0e0e0 !important;
border-radius: 5px !important;
outline: none !important;
}
.gr-form input[type=range]::-webkit-slider-thumb {
appearance: none !important;
width: 16px !important;
height: 16px !important;
background: var(--primary-color) !important;
border-radius: 50% !important;
cursor: pointer !important;
border: 2px solid white !important;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
}
/* Dropdown styling */
.gr-form select {
background-color: white !important;
border: 2px solid #e0e0e0 !important;
border-radius: 8px !important;
padding: 10px 15px !important;
}
.gr-form select option {
padding: 10px !important;
}
/* Image upload area */
.gr-image-input {
border: 2px dashed #b39ddb !important;
border-radius: var(--border-radius) !important;
background-color: #f3e5f5 !important;
padding: 20px !important;
display: flex !important;
flex-direction: column !important;
align-items: center !important;
justify-content: center !important;
transition: all 0.3s ease !important;
}
.gr-image-input:hover {
background-color: #ede7f6 !important;
border-color: #9575cd !important;
}
/* Add a nice pattern to the background */
body::before {
content: "" !important;
position: fixed !important;
top: 0 !important;
left: 0 !important;
width: 100% !important;
height: 100% !important;
background:
radial-gradient(circle at 10% 20%, rgba(248, 195, 205, 0.1) 0%, rgba(245, 245, 247, 0) 20%),
radial-gradient(circle at 80% 70%, rgba(179, 229, 252, 0.1) 0%, rgba(245, 245, 247, 0) 20%) !important;
pointer-events: none !important;
z-index: -1 !important;
}
/* Gallery styling */
.gr-gallery {
grid-gap: 15px !important;
}
.gr-gallery-item {
border-radius: var(--border-radius) !important;
overflow: hidden !important;
box-shadow: 0 4px 8px var(--shadow-color) !important;
transition: transform 0.3s ease !important;
}
.gr-gallery-item:hover {
transform: scale(1.02) !important;
}
/* Label styling */
.gr-form label {
font-weight: 600 !important;
color: #673ab7 !important;
margin-bottom: 5px !important;
}
/* Improve spacing */
.gr-padded {
padding: 20px !important;
}
.gr-compact {
gap: 15px !important;
}
.gr-form > div {
margin-bottom: 16px !important;
}
/* Headings */
.gr-form h3 {
color: #7b1fa2 !important;
margin-top: 5px !important;
margin-bottom: 15px !important;
border-bottom: 2px solid #e1bee7 !important;
padding-bottom: 8px !important;
}
/* Examples section */
#examples-panel {
background-color: #f3e5f5 !important;
border-radius: var(--border-radius) !important;
padding: 15px !important;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05) !important;
}
#examples-panel h2 {
color: #7b1fa2 !important;
font-size: 1.5rem !important;
margin-bottom: 15px !important;
}
/* Accordion styling */
.gr-accordion {
border: 1px solid #e0e0e0 !important;
border-radius: var(--border-radius) !important;
overflow: hidden !important;
}
.gr-accordion summary {
padding: 12px 16px !important;
background-color: #f9f9f9 !important;
cursor: pointer !important;
font-weight: 600 !important;
color: #673ab7 !important;
}
/* Generate button special styling */
#generate-btn {
background: linear-gradient(135deg, #ff9a9e, #fad0c4) !important;
font-size: 1.1rem !important;
padding: 12px 24px !important;
margin-top: 10px !important;
margin-bottom: 15px !important;
width: 100% !important;
}
#generate-btn:hover {
background: linear-gradient(135deg, #fad0c4, #ff9a9e) !important;
}
"""
_HEADER_ = '''
<div style="text-align: center; max-width: 850px; margin: 0 auto; padding: 25px 0;">
<div style="background: linear-gradient(135deg, #f8c3cd, #e1bee7, #b3e5fc); color: white; padding: 15px; border-radius: 15px; box-shadow: 0 10px 20px rgba(0,0,0,0.1); margin-bottom: 20px;">
<h1 style="font-size: 3rem; font-weight: 800; margin: 0; color: white; text-shadow: 2px 2px 4px rgba(0,0,0,0.2);">✨ DreamO Video ✨</h1>
<p style="font-size: 1.2rem; margin: 10px 0 0;">Create customized images with advanced AI</p>
</div>
<div style="background: white; padding: 15px; border-radius: 12px; box-shadow: 0 5px 15px rgba(0,0,0,0.05);">
<p style="font-size: 1rem; margin: 0;">In the current demo version, due to ZeroGPU limitations, video generation is restricted to 2 seconds only. (The full version supports generation of up to 60 seconds)</p>
</div>
</div>
<div style="background: #fff9c4; padding: 15px; border-radius: 12px; margin-bottom: 20px; border-left: 5px solid #ffd54f; box-shadow: 0 5px 15px rgba(0,0,0,0.05);">
<h3 style="margin-top: 0; color: #ff6f00;">🚩 Update Notes:</h3>
<ul style="margin-bottom: 0; padding-left: 20px;">
<li><b>2025.05.11:</b> We have updated the model to mitigate over-saturation and plastic-face issues. The new version shows consistent improvements over the previous release.</li>
<li><b>2025.05.13:</b> 'DreamO Video' Integration version Release</li>
</ul>
</div>
'''
_CITE_ = r"""
<div style="background: white; padding: 20px; border-radius: 12px; margin-top: 20px; box-shadow: 0 5px 15px rgba(0,0,0,0.05);">
<p style="margin: 0; font-size: 1.1rem;">If DreamO is helpful, please help to ⭐ the <a href='https://discord.gg/openfreeai' target='_blank' style="color: #9c27b0; font-weight: 600;">community</a>. Thanks!</p>
<hr style="border: none; height: 1px; background-color: #e0e0e0; margin: 15px 0;">
<h4 style="margin: 0 0 10px; color: #7b1fa2;">📧 Contact</h4>
<p style="margin: 0;">If you have any questions or feedback, feel free to open a discussion or contact <b>[email protected]</b></p>
</div>
"""
def create_demo():
with gr.Blocks(css=_CUSTOM_CSS_) as demo:
gr.HTML(_HEADER_)
with gr.Row():
with gr.Column(scale=6):
with gr.Group(elem_id="input-panel", elem_classes="panel-box"):
gr.Markdown("### 📸 Reference Images")
with gr.Row():
with gr.Column():
ref_image1 = gr.Image(label="Reference Image 1", type="numpy", height=256, elem_id="ref-image-1")
ref_task1 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Task for Reference Image 1", elem_id="ref-task-1")
with gr.Column():
ref_image2 = gr.Image(label="Reference Image 2", type="numpy", height=256, elem_id="ref-image-2")
ref_task2 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Task for Reference Image 2", elem_id="ref-task-2")
gr.Markdown("### ✏️ Generation Parameters")
prompt = gr.Textbox(label="Prompt", value="a person playing guitar in the street", elem_id="prompt-input")
with gr.Row():
width = gr.Slider(768, 1024, 1024, step=16, label="Width", elem_id="width-slider")
height = gr.Slider(768, 1024, 1024, step=16, label="Height", elem_id="height-slider")
with gr.Row():
num_steps = gr.Slider(8, 30, 12, step=1, label="Number of Steps", elem_id="steps-slider")
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance Scale", elem_id="guidance-slider")
seed = gr.Textbox(label="Seed (-1 for random)", value="-1", elem_id="seed-input")
with gr.Accordion("Advanced Options", open=False):
ref_res = gr.Slider(512, 1024, 512, step=16, label="Resolution for Reference Image")
neg_prompt = gr.Textbox(label="Negative Prompt", value="")
neg_guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Negative Guidance")
with gr.Row():
true_cfg = gr.Slider(1, 5, 1, step=0.1, label="True CFG")
first_step_guidance = gr.Slider(0, 10, 0, step=0.1, label="First Step Guidance")
with gr.Row():
cfg_start_step = gr.Slider(0, 30, 0, step=1, label="CFG Start Step")
cfg_end_step = gr.Slider(0, 30, 0, step=1, label="CFG End Step")
generate_btn = gr.Button("✨ Generate Image", elem_id="generate-btn")
gr.HTML(_CITE_)
with gr.Column(scale=6):
with gr.Group(elem_id="output-panel", elem_classes="panel-box"):
gr.Markdown("### 🖼️ Generated Result")
output_image = gr.Image(label="Generated Image", elem_id="output-image", format='png')
seed_output = gr.Textbox(label="Used Seed", elem_id="seed-output")
# (2) 영상 생성 버튼 & 출력 영역 추가
generate_video_btn = gr.Button("🎬 Generate Video from Image")
output_video = gr.Video(label="Generated Video", elem_id="video-output")
gr.Markdown("### 🔍 Preprocessing")
debug_image = gr.Gallery(
label="Preprocessing Results (including face crop and background removal)",
elem_id="debug-gallery",
)
with gr.Group(elem_id="examples-panel", elem_classes="panel-box"):
gr.Markdown("## 📚 Examples")
example_inps = [
[
'example_inputs/choi.jpg',
None,
'ip',
'ip',
'a woman sitting on the cloud, playing guitar',
1206523688721442817,
],
[
'example_inputs/choi.jpg',
None,
'id',
'ip',
'a woman holding a sign saying "TOP", on the mountain',
10441727852953907380,
],
[
'example_inputs/perfume.png',
None,
'ip',
'ip',
'a perfume under spotlight',
116150031980664704,
],
[
'example_inputs/choi.jpg',
None,
'id',
'ip',
'portrait, in alps',
5443415087540486371,
],
[
'example_inputs/mickey.png',
None,
'style',
'ip',
'generate a same style image. A rooster wearing overalls.',
6245580464677124951,
],
[
'example_inputs/mountain.png',
None,
'style',
'ip',
'generate a same style image. A pavilion by the river, and the distant mountains are endless',
5248066378927500767,
],
[
'example_inputs/shirt.png',
'example_inputs/skirt.jpeg',
'ip',
'ip',
'A girl is wearing a short-sleeved shirt and a short skirt on the beach.',
9514069256241143615,
],
[
'example_inputs/woman2.png',
'example_inputs/dress.png',
'id',
'ip',
'the woman wearing a dress, In the banquet hall',
7698454872441022867,
],
[
'example_inputs/dog1.png',
'example_inputs/dog2.png',
'ip',
'ip',
'two dogs in the jungle',
6187006025405083344,
],
]
gr.Examples(
examples=example_inps,
inputs=[ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed],
label='Examples by category: IP task (rows 1-4), ID task (row 5), Style task (rows 6-7), Try-On task (rows 8-9)',
cache_examples='lazy',
outputs=[output_image, debug_image, seed_output],
fn=generate_image,
)
# 기존 이미지 생성 함수와 연결
generate_btn.click(
fn=generate_image,
inputs=[
ref_image1,
ref_image2,
ref_task1,
ref_task2,
prompt,
seed,
width,
height,
ref_res,
num_steps,
guidance,
true_cfg,
cfg_start_step,
cfg_end_step,
neg_prompt,
neg_guidance,
first_step_guidance,
],
outputs=[output_image, debug_image, seed_output],
)
# (3) 영상 생성 버튼 클릭 -> generate_video_from_image() 호출
def on_click_generate_video(img):
if img is None:
raise gr.Error("먼저 이미지를 생성해주세요.")
video_path = generate_video_from_image(img)
return video_path
generate_video_btn.click(
fn=on_click_generate_video,
inputs=[output_image],
outputs=[output_video],
)
return demo
if __name__ == '__main__':
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
share=True,
ssr_mode=False
)