openfree commited on
Commit
dce7d65
·
verified ·
1 Parent(s): 8b5c30d

Delete models/hunyuan_video_packed.py

Browse files
Files changed (1) hide show
  1. models/hunyuan_video_packed.py +0 -1032
models/hunyuan_video_packed.py DELETED
@@ -1,1032 +0,0 @@
1
- from typing import Any, Dict, List, Optional, Tuple, Union
2
-
3
- import torch
4
- import einops
5
- import torch.nn as nn
6
- import numpy as np
7
-
8
- from diffusers.loaders import FromOriginalModelMixin
9
- from diffusers.configuration_utils import ConfigMixin, register_to_config
10
- from diffusers.loaders import PeftAdapterMixin
11
- from diffusers.utils import logging
12
- from diffusers.models.attention import FeedForward
13
- from diffusers.models.attention_processor import Attention
14
- from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
15
- from diffusers.models.modeling_outputs import Transformer2DModelOutput
16
- from diffusers.models.modeling_utils import ModelMixin
17
- from diffusers_helper.dit_common import LayerNorm
18
- from diffusers_helper.utils import zero_module
19
-
20
-
21
- enabled_backends = []
22
-
23
- if torch.backends.cuda.flash_sdp_enabled():
24
- enabled_backends.append("flash")
25
- if torch.backends.cuda.math_sdp_enabled():
26
- enabled_backends.append("math")
27
- if torch.backends.cuda.mem_efficient_sdp_enabled():
28
- enabled_backends.append("mem_efficient")
29
- if torch.backends.cuda.cudnn_sdp_enabled():
30
- enabled_backends.append("cudnn")
31
-
32
- print("Currently enabled native sdp backends:", enabled_backends)
33
-
34
- try:
35
- # raise NotImplementedError
36
- from xformers.ops import memory_efficient_attention as xformers_attn_func
37
- print('Xformers is installed!')
38
- except:
39
- print('Xformers is not installed!')
40
- xformers_attn_func = None
41
-
42
- try:
43
- # raise NotImplementedError
44
- from flash_attn import flash_attn_varlen_func, flash_attn_func
45
- print('Flash Attn is installed!')
46
- except:
47
- print('Flash Attn is not installed!')
48
- flash_attn_varlen_func = None
49
- flash_attn_func = None
50
-
51
- try:
52
- # raise NotImplementedError
53
- from sageattention import sageattn_varlen, sageattn
54
- print('Sage Attn is installed!')
55
- except:
56
- print('Sage Attn is not installed!')
57
- sageattn_varlen = None
58
- sageattn = None
59
-
60
-
61
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
62
-
63
-
64
- def pad_for_3d_conv(x, kernel_size):
65
- b, c, t, h, w = x.shape
66
- pt, ph, pw = kernel_size
67
- pad_t = (pt - (t % pt)) % pt
68
- pad_h = (ph - (h % ph)) % ph
69
- pad_w = (pw - (w % pw)) % pw
70
- return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
71
-
72
-
73
- def center_down_sample_3d(x, kernel_size):
74
- # pt, ph, pw = kernel_size
75
- # cp = (pt * ph * pw) // 2
76
- # xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
77
- # xc = xp[cp]
78
- # return xc
79
- return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
80
-
81
-
82
- def get_cu_seqlens(text_mask, img_len):
83
- batch_size = text_mask.shape[0]
84
- text_len = text_mask.sum(dim=1)
85
- max_len = text_mask.shape[1] + img_len
86
-
87
- cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
88
-
89
- for i in range(batch_size):
90
- s = text_len[i] + img_len
91
- s1 = i * max_len + s
92
- s2 = (i + 1) * max_len
93
- cu_seqlens[2 * i + 1] = s1
94
- cu_seqlens[2 * i + 2] = s2
95
-
96
- return cu_seqlens
97
-
98
-
99
- def apply_rotary_emb_transposed(x, freqs_cis):
100
- cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
101
- x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
102
- x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
103
- out = x.float() * cos + x_rotated.float() * sin
104
- out = out.to(x)
105
- return out
106
-
107
-
108
- def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
109
- if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
110
- if sageattn is not None:
111
- x = sageattn(q, k, v, tensor_layout='NHD')
112
- return x
113
-
114
- if flash_attn_func is not None:
115
- x = flash_attn_func(q, k, v)
116
- return x
117
-
118
- if xformers_attn_func is not None:
119
- x = xformers_attn_func(q, k, v)
120
- return x
121
-
122
- x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
123
- return x
124
-
125
- batch_size = q.shape[0]
126
- q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
127
- k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
128
- v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
129
- if sageattn_varlen is not None:
130
- x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
131
- elif flash_attn_varlen_func is not None:
132
- x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
133
- else:
134
- raise NotImplementedError('No Attn Installed!')
135
- x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
136
- return x
137
-
138
-
139
- class HunyuanAttnProcessorFlashAttnDouble:
140
- def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
141
- cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
142
-
143
- query = attn.to_q(hidden_states)
144
- key = attn.to_k(hidden_states)
145
- value = attn.to_v(hidden_states)
146
-
147
- query = query.unflatten(2, (attn.heads, -1))
148
- key = key.unflatten(2, (attn.heads, -1))
149
- value = value.unflatten(2, (attn.heads, -1))
150
-
151
- query = attn.norm_q(query)
152
- key = attn.norm_k(key)
153
-
154
- query = apply_rotary_emb_transposed(query, image_rotary_emb)
155
- key = apply_rotary_emb_transposed(key, image_rotary_emb)
156
-
157
- encoder_query = attn.add_q_proj(encoder_hidden_states)
158
- encoder_key = attn.add_k_proj(encoder_hidden_states)
159
- encoder_value = attn.add_v_proj(encoder_hidden_states)
160
-
161
- encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
162
- encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
163
- encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
164
-
165
- encoder_query = attn.norm_added_q(encoder_query)
166
- encoder_key = attn.norm_added_k(encoder_key)
167
-
168
- query = torch.cat([query, encoder_query], dim=1)
169
- key = torch.cat([key, encoder_key], dim=1)
170
- value = torch.cat([value, encoder_value], dim=1)
171
-
172
- hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
173
- hidden_states = hidden_states.flatten(-2)
174
-
175
- txt_length = encoder_hidden_states.shape[1]
176
- hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
177
-
178
- hidden_states = attn.to_out[0](hidden_states)
179
- hidden_states = attn.to_out[1](hidden_states)
180
- encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
181
-
182
- return hidden_states, encoder_hidden_states
183
-
184
-
185
- class HunyuanAttnProcessorFlashAttnSingle:
186
- def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
187
- cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
188
-
189
- hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
190
-
191
- query = attn.to_q(hidden_states)
192
- key = attn.to_k(hidden_states)
193
- value = attn.to_v(hidden_states)
194
-
195
- query = query.unflatten(2, (attn.heads, -1))
196
- key = key.unflatten(2, (attn.heads, -1))
197
- value = value.unflatten(2, (attn.heads, -1))
198
-
199
- query = attn.norm_q(query)
200
- key = attn.norm_k(key)
201
-
202
- txt_length = encoder_hidden_states.shape[1]
203
-
204
- query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
205
- key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
206
-
207
- hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
208
- hidden_states = hidden_states.flatten(-2)
209
-
210
- hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
211
-
212
- return hidden_states, encoder_hidden_states
213
-
214
-
215
- class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
216
- def __init__(self, embedding_dim, pooled_projection_dim):
217
- super().__init__()
218
-
219
- self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
220
- self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
221
- self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
222
- self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
223
-
224
- def forward(self, timestep, guidance, pooled_projection):
225
- timesteps_proj = self.time_proj(timestep)
226
- timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
227
-
228
- guidance_proj = self.time_proj(guidance)
229
- guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
230
-
231
- time_guidance_emb = timesteps_emb + guidance_emb
232
-
233
- pooled_projections = self.text_embedder(pooled_projection)
234
- conditioning = time_guidance_emb + pooled_projections
235
-
236
- return conditioning
237
-
238
-
239
- class CombinedTimestepTextProjEmbeddings(nn.Module):
240
- def __init__(self, embedding_dim, pooled_projection_dim):
241
- super().__init__()
242
-
243
- self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
244
- self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
245
- self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
246
-
247
- def forward(self, timestep, pooled_projection):
248
- timesteps_proj = self.time_proj(timestep)
249
- timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
250
-
251
- pooled_projections = self.text_embedder(pooled_projection)
252
-
253
- conditioning = timesteps_emb + pooled_projections
254
-
255
- return conditioning
256
-
257
-
258
- class HunyuanVideoAdaNorm(nn.Module):
259
- def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
260
- super().__init__()
261
-
262
- out_features = out_features or 2 * in_features
263
- self.linear = nn.Linear(in_features, out_features)
264
- self.nonlinearity = nn.SiLU()
265
-
266
- def forward(
267
- self, temb: torch.Tensor
268
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
269
- temb = self.linear(self.nonlinearity(temb))
270
- gate_msa, gate_mlp = temb.chunk(2, dim=-1)
271
- gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
272
- return gate_msa, gate_mlp
273
-
274
-
275
- class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
276
- def __init__(
277
- self,
278
- num_attention_heads: int,
279
- attention_head_dim: int,
280
- mlp_width_ratio: str = 4.0,
281
- mlp_drop_rate: float = 0.0,
282
- attention_bias: bool = True,
283
- ) -> None:
284
- super().__init__()
285
-
286
- hidden_size = num_attention_heads * attention_head_dim
287
-
288
- self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
289
- self.attn = Attention(
290
- query_dim=hidden_size,
291
- cross_attention_dim=None,
292
- heads=num_attention_heads,
293
- dim_head=attention_head_dim,
294
- bias=attention_bias,
295
- )
296
-
297
- self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
298
- self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
299
-
300
- self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
301
-
302
- def forward(
303
- self,
304
- hidden_states: torch.Tensor,
305
- temb: torch.Tensor,
306
- attention_mask: Optional[torch.Tensor] = None,
307
- ) -> torch.Tensor:
308
- norm_hidden_states = self.norm1(hidden_states)
309
-
310
- attn_output = self.attn(
311
- hidden_states=norm_hidden_states,
312
- encoder_hidden_states=None,
313
- attention_mask=attention_mask,
314
- )
315
-
316
- gate_msa, gate_mlp = self.norm_out(temb)
317
- hidden_states = hidden_states + attn_output * gate_msa
318
-
319
- ff_output = self.ff(self.norm2(hidden_states))
320
- hidden_states = hidden_states + ff_output * gate_mlp
321
-
322
- return hidden_states
323
-
324
-
325
- class HunyuanVideoIndividualTokenRefiner(nn.Module):
326
- def __init__(
327
- self,
328
- num_attention_heads: int,
329
- attention_head_dim: int,
330
- num_layers: int,
331
- mlp_width_ratio: float = 4.0,
332
- mlp_drop_rate: float = 0.0,
333
- attention_bias: bool = True,
334
- ) -> None:
335
- super().__init__()
336
-
337
- self.refiner_blocks = nn.ModuleList(
338
- [
339
- HunyuanVideoIndividualTokenRefinerBlock(
340
- num_attention_heads=num_attention_heads,
341
- attention_head_dim=attention_head_dim,
342
- mlp_width_ratio=mlp_width_ratio,
343
- mlp_drop_rate=mlp_drop_rate,
344
- attention_bias=attention_bias,
345
- )
346
- for _ in range(num_layers)
347
- ]
348
- )
349
-
350
- def forward(
351
- self,
352
- hidden_states: torch.Tensor,
353
- temb: torch.Tensor,
354
- attention_mask: Optional[torch.Tensor] = None,
355
- ) -> None:
356
- self_attn_mask = None
357
- if attention_mask is not None:
358
- batch_size = attention_mask.shape[0]
359
- seq_len = attention_mask.shape[1]
360
- attention_mask = attention_mask.to(hidden_states.device).bool()
361
- self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
362
- self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
363
- self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
364
- self_attn_mask[:, :, :, 0] = True
365
-
366
- for block in self.refiner_blocks:
367
- hidden_states = block(hidden_states, temb, self_attn_mask)
368
-
369
- return hidden_states
370
-
371
-
372
- class HunyuanVideoTokenRefiner(nn.Module):
373
- def __init__(
374
- self,
375
- in_channels: int,
376
- num_attention_heads: int,
377
- attention_head_dim: int,
378
- num_layers: int,
379
- mlp_ratio: float = 4.0,
380
- mlp_drop_rate: float = 0.0,
381
- attention_bias: bool = True,
382
- ) -> None:
383
- super().__init__()
384
-
385
- hidden_size = num_attention_heads * attention_head_dim
386
-
387
- self.time_text_embed = CombinedTimestepTextProjEmbeddings(
388
- embedding_dim=hidden_size, pooled_projection_dim=in_channels
389
- )
390
- self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
391
- self.token_refiner = HunyuanVideoIndividualTokenRefiner(
392
- num_attention_heads=num_attention_heads,
393
- attention_head_dim=attention_head_dim,
394
- num_layers=num_layers,
395
- mlp_width_ratio=mlp_ratio,
396
- mlp_drop_rate=mlp_drop_rate,
397
- attention_bias=attention_bias,
398
- )
399
-
400
- def forward(
401
- self,
402
- hidden_states: torch.Tensor,
403
- timestep: torch.LongTensor,
404
- attention_mask: Optional[torch.LongTensor] = None,
405
- ) -> torch.Tensor:
406
- if attention_mask is None:
407
- pooled_projections = hidden_states.mean(dim=1)
408
- else:
409
- original_dtype = hidden_states.dtype
410
- mask_float = attention_mask.float().unsqueeze(-1)
411
- pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
412
- pooled_projections = pooled_projections.to(original_dtype)
413
-
414
- temb = self.time_text_embed(timestep, pooled_projections)
415
- hidden_states = self.proj_in(hidden_states)
416
- hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
417
-
418
- return hidden_states
419
-
420
-
421
- class HunyuanVideoRotaryPosEmbed(nn.Module):
422
- def __init__(self, rope_dim, theta):
423
- super().__init__()
424
- self.DT, self.DY, self.DX = rope_dim
425
- self.theta = theta
426
-
427
- @torch.no_grad()
428
- def get_frequency(self, dim, pos):
429
- T, H, W = pos.shape
430
- freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
431
- freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
432
- return freqs.cos(), freqs.sin()
433
-
434
- @torch.no_grad()
435
- def forward_inner(self, frame_indices, height, width, device):
436
- GT, GY, GX = torch.meshgrid(
437
- frame_indices.to(device=device, dtype=torch.float32),
438
- torch.arange(0, height, device=device, dtype=torch.float32),
439
- torch.arange(0, width, device=device, dtype=torch.float32),
440
- indexing="ij"
441
- )
442
-
443
- FCT, FST = self.get_frequency(self.DT, GT)
444
- FCY, FSY = self.get_frequency(self.DY, GY)
445
- FCX, FSX = self.get_frequency(self.DX, GX)
446
-
447
- result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
448
-
449
- return result.to(device)
450
-
451
- @torch.no_grad()
452
- def forward(self, frame_indices, height, width, device):
453
- frame_indices = frame_indices.unbind(0)
454
- results = [self.forward_inner(f, height, width, device) for f in frame_indices]
455
- results = torch.stack(results, dim=0)
456
- return results
457
-
458
-
459
- class AdaLayerNormZero(nn.Module):
460
- def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
461
- super().__init__()
462
- self.silu = nn.SiLU()
463
- self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
464
- if norm_type == "layer_norm":
465
- self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
466
- else:
467
- raise ValueError(f"unknown norm_type {norm_type}")
468
-
469
- def forward(
470
- self,
471
- x: torch.Tensor,
472
- emb: Optional[torch.Tensor] = None,
473
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
474
- emb = emb.unsqueeze(-2)
475
- emb = self.linear(self.silu(emb))
476
- shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
477
- x = self.norm(x) * (1 + scale_msa) + shift_msa
478
- return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
479
-
480
-
481
- class AdaLayerNormZeroSingle(nn.Module):
482
- def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
483
- super().__init__()
484
-
485
- self.silu = nn.SiLU()
486
- self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
487
- if norm_type == "layer_norm":
488
- self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
489
- else:
490
- raise ValueError(f"unknown norm_type {norm_type}")
491
-
492
- def forward(
493
- self,
494
- x: torch.Tensor,
495
- emb: Optional[torch.Tensor] = None,
496
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
497
- emb = emb.unsqueeze(-2)
498
- emb = self.linear(self.silu(emb))
499
- shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
500
- x = self.norm(x) * (1 + scale_msa) + shift_msa
501
- return x, gate_msa
502
-
503
-
504
- class AdaLayerNormContinuous(nn.Module):
505
- def __init__(
506
- self,
507
- embedding_dim: int,
508
- conditioning_embedding_dim: int,
509
- elementwise_affine=True,
510
- eps=1e-5,
511
- bias=True,
512
- norm_type="layer_norm",
513
- ):
514
- super().__init__()
515
- self.silu = nn.SiLU()
516
- self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
517
- if norm_type == "layer_norm":
518
- self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
519
- else:
520
- raise ValueError(f"unknown norm_type {norm_type}")
521
-
522
- def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
523
- emb = emb.unsqueeze(-2)
524
- emb = self.linear(self.silu(emb))
525
- scale, shift = emb.chunk(2, dim=-1)
526
- x = self.norm(x) * (1 + scale) + shift
527
- return x
528
-
529
-
530
- class HunyuanVideoSingleTransformerBlock(nn.Module):
531
- def __init__(
532
- self,
533
- num_attention_heads: int,
534
- attention_head_dim: int,
535
- mlp_ratio: float = 4.0,
536
- qk_norm: str = "rms_norm",
537
- ) -> None:
538
- super().__init__()
539
-
540
- hidden_size = num_attention_heads * attention_head_dim
541
- mlp_dim = int(hidden_size * mlp_ratio)
542
-
543
- self.attn = Attention(
544
- query_dim=hidden_size,
545
- cross_attention_dim=None,
546
- dim_head=attention_head_dim,
547
- heads=num_attention_heads,
548
- out_dim=hidden_size,
549
- bias=True,
550
- processor=HunyuanAttnProcessorFlashAttnSingle(),
551
- qk_norm=qk_norm,
552
- eps=1e-6,
553
- pre_only=True,
554
- )
555
-
556
- self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
557
- self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
558
- self.act_mlp = nn.GELU(approximate="tanh")
559
- self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
560
-
561
- def forward(
562
- self,
563
- hidden_states: torch.Tensor,
564
- encoder_hidden_states: torch.Tensor,
565
- temb: torch.Tensor,
566
- attention_mask: Optional[torch.Tensor] = None,
567
- image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
568
- ) -> torch.Tensor:
569
- text_seq_length = encoder_hidden_states.shape[1]
570
- hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
571
-
572
- residual = hidden_states
573
-
574
- # 1. Input normalization
575
- norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
576
- mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
577
-
578
- norm_hidden_states, norm_encoder_hidden_states = (
579
- norm_hidden_states[:, :-text_seq_length, :],
580
- norm_hidden_states[:, -text_seq_length:, :],
581
- )
582
-
583
- # 2. Attention
584
- attn_output, context_attn_output = self.attn(
585
- hidden_states=norm_hidden_states,
586
- encoder_hidden_states=norm_encoder_hidden_states,
587
- attention_mask=attention_mask,
588
- image_rotary_emb=image_rotary_emb,
589
- )
590
- attn_output = torch.cat([attn_output, context_attn_output], dim=1)
591
-
592
- # 3. Modulation and residual connection
593
- hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
594
- hidden_states = gate * self.proj_out(hidden_states)
595
- hidden_states = hidden_states + residual
596
-
597
- hidden_states, encoder_hidden_states = (
598
- hidden_states[:, :-text_seq_length, :],
599
- hidden_states[:, -text_seq_length:, :],
600
- )
601
- return hidden_states, encoder_hidden_states
602
-
603
-
604
- class HunyuanVideoTransformerBlock(nn.Module):
605
- def __init__(
606
- self,
607
- num_attention_heads: int,
608
- attention_head_dim: int,
609
- mlp_ratio: float,
610
- qk_norm: str = "rms_norm",
611
- ) -> None:
612
- super().__init__()
613
-
614
- hidden_size = num_attention_heads * attention_head_dim
615
-
616
- self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
617
- self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
618
-
619
- self.attn = Attention(
620
- query_dim=hidden_size,
621
- cross_attention_dim=None,
622
- added_kv_proj_dim=hidden_size,
623
- dim_head=attention_head_dim,
624
- heads=num_attention_heads,
625
- out_dim=hidden_size,
626
- context_pre_only=False,
627
- bias=True,
628
- processor=HunyuanAttnProcessorFlashAttnDouble(),
629
- qk_norm=qk_norm,
630
- eps=1e-6,
631
- )
632
-
633
- self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
634
- self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
635
-
636
- self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
637
- self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
638
-
639
- def forward(
640
- self,
641
- hidden_states: torch.Tensor,
642
- encoder_hidden_states: torch.Tensor,
643
- temb: torch.Tensor,
644
- attention_mask: Optional[torch.Tensor] = None,
645
- freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
646
- ) -> Tuple[torch.Tensor, torch.Tensor]:
647
- # 1. Input normalization
648
- norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
649
- norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
650
-
651
- # 2. Joint attention
652
- attn_output, context_attn_output = self.attn(
653
- hidden_states=norm_hidden_states,
654
- encoder_hidden_states=norm_encoder_hidden_states,
655
- attention_mask=attention_mask,
656
- image_rotary_emb=freqs_cis,
657
- )
658
-
659
- # 3. Modulation and residual connection
660
- hidden_states = hidden_states + attn_output * gate_msa
661
- encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
662
-
663
- norm_hidden_states = self.norm2(hidden_states)
664
- norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
665
-
666
- norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
667
- norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
668
-
669
- # 4. Feed-forward
670
- ff_output = self.ff(norm_hidden_states)
671
- context_ff_output = self.ff_context(norm_encoder_hidden_states)
672
-
673
- hidden_states = hidden_states + gate_mlp * ff_output
674
- encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
675
-
676
- return hidden_states, encoder_hidden_states
677
-
678
-
679
- class ClipVisionProjection(nn.Module):
680
- def __init__(self, in_channels, out_channels):
681
- super().__init__()
682
- self.up = nn.Linear(in_channels, out_channels * 3)
683
- self.down = nn.Linear(out_channels * 3, out_channels)
684
-
685
- def forward(self, x):
686
- projected_x = self.down(nn.functional.silu(self.up(x)))
687
- return projected_x
688
-
689
-
690
- class HunyuanVideoPatchEmbed(nn.Module):
691
- def __init__(self, patch_size, in_chans, embed_dim):
692
- super().__init__()
693
- self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
694
-
695
-
696
- class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
697
- def __init__(self, inner_dim):
698
- super().__init__()
699
- self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
700
- self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
701
- self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
702
-
703
- @torch.no_grad()
704
- def initialize_weight_from_another_conv3d(self, another_layer):
705
- weight = another_layer.weight.detach().clone()
706
- bias = another_layer.bias.detach().clone()
707
-
708
- sd = {
709
- 'proj.weight': weight.clone(),
710
- 'proj.bias': bias.clone(),
711
- 'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
712
- 'proj_2x.bias': bias.clone(),
713
- 'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
714
- 'proj_4x.bias': bias.clone(),
715
- }
716
-
717
- sd = {k: v.clone() for k, v in sd.items()}
718
-
719
- self.load_state_dict(sd)
720
- return
721
-
722
-
723
- class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
724
- @register_to_config
725
- def __init__(
726
- self,
727
- in_channels: int = 16,
728
- out_channels: int = 16,
729
- num_attention_heads: int = 24,
730
- attention_head_dim: int = 128,
731
- num_layers: int = 20,
732
- num_single_layers: int = 40,
733
- num_refiner_layers: int = 2,
734
- mlp_ratio: float = 4.0,
735
- patch_size: int = 2,
736
- patch_size_t: int = 1,
737
- qk_norm: str = "rms_norm",
738
- guidance_embeds: bool = True,
739
- text_embed_dim: int = 4096,
740
- pooled_projection_dim: int = 768,
741
- rope_theta: float = 256.0,
742
- rope_axes_dim: Tuple[int] = (16, 56, 56),
743
- has_image_proj=False,
744
- image_proj_dim=1152,
745
- has_clean_x_embedder=False,
746
- ) -> None:
747
- super().__init__()
748
-
749
- inner_dim = num_attention_heads * attention_head_dim
750
- out_channels = out_channels or in_channels
751
-
752
- # 1. Latent and condition embedders
753
- self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
754
- self.context_embedder = HunyuanVideoTokenRefiner(
755
- text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
756
- )
757
- self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
758
-
759
- self.clean_x_embedder = None
760
- self.image_projection = None
761
-
762
- # 2. RoPE
763
- self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
764
-
765
- # 3. Dual stream transformer blocks
766
- self.transformer_blocks = nn.ModuleList(
767
- [
768
- HunyuanVideoTransformerBlock(
769
- num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
770
- )
771
- for _ in range(num_layers)
772
- ]
773
- )
774
-
775
- # 4. Single stream transformer blocks
776
- self.single_transformer_blocks = nn.ModuleList(
777
- [
778
- HunyuanVideoSingleTransformerBlock(
779
- num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
780
- )
781
- for _ in range(num_single_layers)
782
- ]
783
- )
784
-
785
- # 5. Output projection
786
- self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
787
- self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
788
-
789
- self.inner_dim = inner_dim
790
- self.use_gradient_checkpointing = False
791
- self.enable_teacache = False
792
-
793
- if has_image_proj:
794
- self.install_image_projection(image_proj_dim)
795
-
796
- if has_clean_x_embedder:
797
- self.install_clean_x_embedder()
798
-
799
- self.high_quality_fp32_output_for_inference = False
800
-
801
- def install_image_projection(self, in_channels):
802
- self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
803
- self.config['has_image_proj'] = True
804
- self.config['image_proj_dim'] = in_channels
805
-
806
- def install_clean_x_embedder(self):
807
- self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
808
- self.config['has_clean_x_embedder'] = True
809
-
810
- def enable_gradient_checkpointing(self):
811
- self.use_gradient_checkpointing = True
812
- print('self.use_gradient_checkpointing = True')
813
-
814
- def disable_gradient_checkpointing(self):
815
- self.use_gradient_checkpointing = False
816
- print('self.use_gradient_checkpointing = False')
817
-
818
- def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
819
- self.enable_teacache = enable_teacache
820
- self.cnt = 0
821
- self.num_steps = num_steps
822
- self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
823
- self.accumulated_rel_l1_distance = 0
824
- self.previous_modulated_input = None
825
- self.previous_residual = None
826
- self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
827
-
828
- def gradient_checkpointing_method(self, block, *args):
829
- if self.use_gradient_checkpointing:
830
- result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
831
- else:
832
- result = block(*args)
833
- return result
834
-
835
- def process_input_hidden_states(
836
- self,
837
- latents, latent_indices=None,
838
- clean_latents=None, clean_latent_indices=None,
839
- clean_latents_2x=None, clean_latent_2x_indices=None,
840
- clean_latents_4x=None, clean_latent_4x_indices=None
841
- ):
842
- hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
843
- B, C, T, H, W = hidden_states.shape
844
-
845
- if latent_indices is None:
846
- latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
847
-
848
- hidden_states = hidden_states.flatten(2).transpose(1, 2)
849
-
850
- rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
851
- rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
852
-
853
- if clean_latents is not None and clean_latent_indices is not None:
854
- clean_latents = clean_latents.to(hidden_states)
855
- clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
856
- clean_latents = clean_latents.flatten(2).transpose(1, 2)
857
-
858
- clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
859
- clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
860
-
861
- hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
862
- rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
863
-
864
- if clean_latents_2x is not None and clean_latent_2x_indices is not None:
865
- clean_latents_2x = clean_latents_2x.to(hidden_states)
866
- clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
867
- clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
868
- clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
869
-
870
- clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
871
- clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
872
- clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
873
- clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
874
-
875
- hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
876
- rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
877
-
878
- if clean_latents_4x is not None and clean_latent_4x_indices is not None:
879
- clean_latents_4x = clean_latents_4x.to(hidden_states)
880
- clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
881
- clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
882
- clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
883
-
884
- clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
885
- clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
886
- clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
887
- clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
888
-
889
- hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
890
- rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
891
-
892
- return hidden_states, rope_freqs
893
-
894
- def forward(
895
- self,
896
- hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
897
- latent_indices=None,
898
- clean_latents=None, clean_latent_indices=None,
899
- clean_latents_2x=None, clean_latent_2x_indices=None,
900
- clean_latents_4x=None, clean_latent_4x_indices=None,
901
- image_embeddings=None,
902
- attention_kwargs=None, return_dict=True
903
- ):
904
-
905
- if attention_kwargs is None:
906
- attention_kwargs = {}
907
-
908
- batch_size, num_channels, num_frames, height, width = hidden_states.shape
909
- p, p_t = self.config['patch_size'], self.config['patch_size_t']
910
- post_patch_num_frames = num_frames // p_t
911
- post_patch_height = height // p
912
- post_patch_width = width // p
913
- original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
914
-
915
- hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
916
-
917
- temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
918
- encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
919
-
920
- if self.image_projection is not None:
921
- assert image_embeddings is not None, 'You must use image embeddings!'
922
- extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
923
- extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
924
-
925
- # must cat before (not after) encoder_hidden_states, due to attn masking
926
- encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
927
- encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
928
-
929
- with torch.no_grad():
930
- if batch_size == 1:
931
- # When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
932
- # If they are not same, then their impls are wrong. Ours are always the correct one.
933
- text_len = encoder_attention_mask.sum().item()
934
- encoder_hidden_states = encoder_hidden_states[:, :text_len]
935
- attention_mask = None, None, None, None
936
- else:
937
- img_seq_len = hidden_states.shape[1]
938
- txt_seq_len = encoder_hidden_states.shape[1]
939
-
940
- cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
941
- cu_seqlens_kv = cu_seqlens_q
942
- max_seqlen_q = img_seq_len + txt_seq_len
943
- max_seqlen_kv = max_seqlen_q
944
-
945
- attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
946
-
947
- if self.enable_teacache:
948
- modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
949
-
950
- if self.cnt == 0 or self.cnt == self.num_steps-1:
951
- should_calc = True
952
- self.accumulated_rel_l1_distance = 0
953
- else:
954
- curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
955
- self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
956
- should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
957
-
958
- if should_calc:
959
- self.accumulated_rel_l1_distance = 0
960
-
961
- self.previous_modulated_input = modulated_inp
962
- self.cnt += 1
963
-
964
- if self.cnt == self.num_steps:
965
- self.cnt = 0
966
-
967
- if not should_calc:
968
- hidden_states = hidden_states + self.previous_residual
969
- else:
970
- ori_hidden_states = hidden_states.clone()
971
-
972
- for block_id, block in enumerate(self.transformer_blocks):
973
- hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
974
- block,
975
- hidden_states,
976
- encoder_hidden_states,
977
- temb,
978
- attention_mask,
979
- rope_freqs
980
- )
981
-
982
- for block_id, block in enumerate(self.single_transformer_blocks):
983
- hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
984
- block,
985
- hidden_states,
986
- encoder_hidden_states,
987
- temb,
988
- attention_mask,
989
- rope_freqs
990
- )
991
-
992
- self.previous_residual = hidden_states - ori_hidden_states
993
- else:
994
- for block_id, block in enumerate(self.transformer_blocks):
995
- hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
996
- block,
997
- hidden_states,
998
- encoder_hidden_states,
999
- temb,
1000
- attention_mask,
1001
- rope_freqs
1002
- )
1003
-
1004
- for block_id, block in enumerate(self.single_transformer_blocks):
1005
- hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
1006
- block,
1007
- hidden_states,
1008
- encoder_hidden_states,
1009
- temb,
1010
- attention_mask,
1011
- rope_freqs
1012
- )
1013
-
1014
- hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
1015
-
1016
- hidden_states = hidden_states[:, -original_context_length:, :]
1017
-
1018
- if self.high_quality_fp32_output_for_inference:
1019
- hidden_states = hidden_states.to(dtype=torch.float32)
1020
- if self.proj_out.weight.dtype != torch.float32:
1021
- self.proj_out.to(dtype=torch.float32)
1022
-
1023
- hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
1024
-
1025
- hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
1026
- t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
1027
- pt=p_t, ph=p, pw=p)
1028
-
1029
- if return_dict:
1030
- return Transformer2DModelOutput(sample=hidden_states)
1031
-
1032
- return hidden_states,