Spaces:
Running
on
Zero
Running
on
Zero
Delete models/hunyuan_video_packed.py
Browse files- models/hunyuan_video_packed.py +0 -1032
models/hunyuan_video_packed.py
DELETED
@@ -1,1032 +0,0 @@
|
|
1 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import einops
|
5 |
-
import torch.nn as nn
|
6 |
-
import numpy as np
|
7 |
-
|
8 |
-
from diffusers.loaders import FromOriginalModelMixin
|
9 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
-
from diffusers.loaders import PeftAdapterMixin
|
11 |
-
from diffusers.utils import logging
|
12 |
-
from diffusers.models.attention import FeedForward
|
13 |
-
from diffusers.models.attention_processor import Attention
|
14 |
-
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
|
15 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
16 |
-
from diffusers.models.modeling_utils import ModelMixin
|
17 |
-
from diffusers_helper.dit_common import LayerNorm
|
18 |
-
from diffusers_helper.utils import zero_module
|
19 |
-
|
20 |
-
|
21 |
-
enabled_backends = []
|
22 |
-
|
23 |
-
if torch.backends.cuda.flash_sdp_enabled():
|
24 |
-
enabled_backends.append("flash")
|
25 |
-
if torch.backends.cuda.math_sdp_enabled():
|
26 |
-
enabled_backends.append("math")
|
27 |
-
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
28 |
-
enabled_backends.append("mem_efficient")
|
29 |
-
if torch.backends.cuda.cudnn_sdp_enabled():
|
30 |
-
enabled_backends.append("cudnn")
|
31 |
-
|
32 |
-
print("Currently enabled native sdp backends:", enabled_backends)
|
33 |
-
|
34 |
-
try:
|
35 |
-
# raise NotImplementedError
|
36 |
-
from xformers.ops import memory_efficient_attention as xformers_attn_func
|
37 |
-
print('Xformers is installed!')
|
38 |
-
except:
|
39 |
-
print('Xformers is not installed!')
|
40 |
-
xformers_attn_func = None
|
41 |
-
|
42 |
-
try:
|
43 |
-
# raise NotImplementedError
|
44 |
-
from flash_attn import flash_attn_varlen_func, flash_attn_func
|
45 |
-
print('Flash Attn is installed!')
|
46 |
-
except:
|
47 |
-
print('Flash Attn is not installed!')
|
48 |
-
flash_attn_varlen_func = None
|
49 |
-
flash_attn_func = None
|
50 |
-
|
51 |
-
try:
|
52 |
-
# raise NotImplementedError
|
53 |
-
from sageattention import sageattn_varlen, sageattn
|
54 |
-
print('Sage Attn is installed!')
|
55 |
-
except:
|
56 |
-
print('Sage Attn is not installed!')
|
57 |
-
sageattn_varlen = None
|
58 |
-
sageattn = None
|
59 |
-
|
60 |
-
|
61 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
62 |
-
|
63 |
-
|
64 |
-
def pad_for_3d_conv(x, kernel_size):
|
65 |
-
b, c, t, h, w = x.shape
|
66 |
-
pt, ph, pw = kernel_size
|
67 |
-
pad_t = (pt - (t % pt)) % pt
|
68 |
-
pad_h = (ph - (h % ph)) % ph
|
69 |
-
pad_w = (pw - (w % pw)) % pw
|
70 |
-
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
|
71 |
-
|
72 |
-
|
73 |
-
def center_down_sample_3d(x, kernel_size):
|
74 |
-
# pt, ph, pw = kernel_size
|
75 |
-
# cp = (pt * ph * pw) // 2
|
76 |
-
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
|
77 |
-
# xc = xp[cp]
|
78 |
-
# return xc
|
79 |
-
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
|
80 |
-
|
81 |
-
|
82 |
-
def get_cu_seqlens(text_mask, img_len):
|
83 |
-
batch_size = text_mask.shape[0]
|
84 |
-
text_len = text_mask.sum(dim=1)
|
85 |
-
max_len = text_mask.shape[1] + img_len
|
86 |
-
|
87 |
-
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
88 |
-
|
89 |
-
for i in range(batch_size):
|
90 |
-
s = text_len[i] + img_len
|
91 |
-
s1 = i * max_len + s
|
92 |
-
s2 = (i + 1) * max_len
|
93 |
-
cu_seqlens[2 * i + 1] = s1
|
94 |
-
cu_seqlens[2 * i + 2] = s2
|
95 |
-
|
96 |
-
return cu_seqlens
|
97 |
-
|
98 |
-
|
99 |
-
def apply_rotary_emb_transposed(x, freqs_cis):
|
100 |
-
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
|
101 |
-
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
|
102 |
-
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
103 |
-
out = x.float() * cos + x_rotated.float() * sin
|
104 |
-
out = out.to(x)
|
105 |
-
return out
|
106 |
-
|
107 |
-
|
108 |
-
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
|
109 |
-
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
|
110 |
-
if sageattn is not None:
|
111 |
-
x = sageattn(q, k, v, tensor_layout='NHD')
|
112 |
-
return x
|
113 |
-
|
114 |
-
if flash_attn_func is not None:
|
115 |
-
x = flash_attn_func(q, k, v)
|
116 |
-
return x
|
117 |
-
|
118 |
-
if xformers_attn_func is not None:
|
119 |
-
x = xformers_attn_func(q, k, v)
|
120 |
-
return x
|
121 |
-
|
122 |
-
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
|
123 |
-
return x
|
124 |
-
|
125 |
-
batch_size = q.shape[0]
|
126 |
-
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
|
127 |
-
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
|
128 |
-
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
|
129 |
-
if sageattn_varlen is not None:
|
130 |
-
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
131 |
-
elif flash_attn_varlen_func is not None:
|
132 |
-
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
133 |
-
else:
|
134 |
-
raise NotImplementedError('No Attn Installed!')
|
135 |
-
x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
|
136 |
-
return x
|
137 |
-
|
138 |
-
|
139 |
-
class HunyuanAttnProcessorFlashAttnDouble:
|
140 |
-
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
141 |
-
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
142 |
-
|
143 |
-
query = attn.to_q(hidden_states)
|
144 |
-
key = attn.to_k(hidden_states)
|
145 |
-
value = attn.to_v(hidden_states)
|
146 |
-
|
147 |
-
query = query.unflatten(2, (attn.heads, -1))
|
148 |
-
key = key.unflatten(2, (attn.heads, -1))
|
149 |
-
value = value.unflatten(2, (attn.heads, -1))
|
150 |
-
|
151 |
-
query = attn.norm_q(query)
|
152 |
-
key = attn.norm_k(key)
|
153 |
-
|
154 |
-
query = apply_rotary_emb_transposed(query, image_rotary_emb)
|
155 |
-
key = apply_rotary_emb_transposed(key, image_rotary_emb)
|
156 |
-
|
157 |
-
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
158 |
-
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
159 |
-
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
160 |
-
|
161 |
-
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
162 |
-
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
163 |
-
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
164 |
-
|
165 |
-
encoder_query = attn.norm_added_q(encoder_query)
|
166 |
-
encoder_key = attn.norm_added_k(encoder_key)
|
167 |
-
|
168 |
-
query = torch.cat([query, encoder_query], dim=1)
|
169 |
-
key = torch.cat([key, encoder_key], dim=1)
|
170 |
-
value = torch.cat([value, encoder_value], dim=1)
|
171 |
-
|
172 |
-
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
173 |
-
hidden_states = hidden_states.flatten(-2)
|
174 |
-
|
175 |
-
txt_length = encoder_hidden_states.shape[1]
|
176 |
-
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
177 |
-
|
178 |
-
hidden_states = attn.to_out[0](hidden_states)
|
179 |
-
hidden_states = attn.to_out[1](hidden_states)
|
180 |
-
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
181 |
-
|
182 |
-
return hidden_states, encoder_hidden_states
|
183 |
-
|
184 |
-
|
185 |
-
class HunyuanAttnProcessorFlashAttnSingle:
|
186 |
-
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
187 |
-
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
188 |
-
|
189 |
-
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
190 |
-
|
191 |
-
query = attn.to_q(hidden_states)
|
192 |
-
key = attn.to_k(hidden_states)
|
193 |
-
value = attn.to_v(hidden_states)
|
194 |
-
|
195 |
-
query = query.unflatten(2, (attn.heads, -1))
|
196 |
-
key = key.unflatten(2, (attn.heads, -1))
|
197 |
-
value = value.unflatten(2, (attn.heads, -1))
|
198 |
-
|
199 |
-
query = attn.norm_q(query)
|
200 |
-
key = attn.norm_k(key)
|
201 |
-
|
202 |
-
txt_length = encoder_hidden_states.shape[1]
|
203 |
-
|
204 |
-
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
|
205 |
-
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
|
206 |
-
|
207 |
-
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
208 |
-
hidden_states = hidden_states.flatten(-2)
|
209 |
-
|
210 |
-
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
211 |
-
|
212 |
-
return hidden_states, encoder_hidden_states
|
213 |
-
|
214 |
-
|
215 |
-
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
|
216 |
-
def __init__(self, embedding_dim, pooled_projection_dim):
|
217 |
-
super().__init__()
|
218 |
-
|
219 |
-
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
220 |
-
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
221 |
-
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
222 |
-
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
223 |
-
|
224 |
-
def forward(self, timestep, guidance, pooled_projection):
|
225 |
-
timesteps_proj = self.time_proj(timestep)
|
226 |
-
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
227 |
-
|
228 |
-
guidance_proj = self.time_proj(guidance)
|
229 |
-
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
|
230 |
-
|
231 |
-
time_guidance_emb = timesteps_emb + guidance_emb
|
232 |
-
|
233 |
-
pooled_projections = self.text_embedder(pooled_projection)
|
234 |
-
conditioning = time_guidance_emb + pooled_projections
|
235 |
-
|
236 |
-
return conditioning
|
237 |
-
|
238 |
-
|
239 |
-
class CombinedTimestepTextProjEmbeddings(nn.Module):
|
240 |
-
def __init__(self, embedding_dim, pooled_projection_dim):
|
241 |
-
super().__init__()
|
242 |
-
|
243 |
-
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
244 |
-
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
245 |
-
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
246 |
-
|
247 |
-
def forward(self, timestep, pooled_projection):
|
248 |
-
timesteps_proj = self.time_proj(timestep)
|
249 |
-
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
250 |
-
|
251 |
-
pooled_projections = self.text_embedder(pooled_projection)
|
252 |
-
|
253 |
-
conditioning = timesteps_emb + pooled_projections
|
254 |
-
|
255 |
-
return conditioning
|
256 |
-
|
257 |
-
|
258 |
-
class HunyuanVideoAdaNorm(nn.Module):
|
259 |
-
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
|
260 |
-
super().__init__()
|
261 |
-
|
262 |
-
out_features = out_features or 2 * in_features
|
263 |
-
self.linear = nn.Linear(in_features, out_features)
|
264 |
-
self.nonlinearity = nn.SiLU()
|
265 |
-
|
266 |
-
def forward(
|
267 |
-
self, temb: torch.Tensor
|
268 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
269 |
-
temb = self.linear(self.nonlinearity(temb))
|
270 |
-
gate_msa, gate_mlp = temb.chunk(2, dim=-1)
|
271 |
-
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
|
272 |
-
return gate_msa, gate_mlp
|
273 |
-
|
274 |
-
|
275 |
-
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
|
276 |
-
def __init__(
|
277 |
-
self,
|
278 |
-
num_attention_heads: int,
|
279 |
-
attention_head_dim: int,
|
280 |
-
mlp_width_ratio: str = 4.0,
|
281 |
-
mlp_drop_rate: float = 0.0,
|
282 |
-
attention_bias: bool = True,
|
283 |
-
) -> None:
|
284 |
-
super().__init__()
|
285 |
-
|
286 |
-
hidden_size = num_attention_heads * attention_head_dim
|
287 |
-
|
288 |
-
self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
289 |
-
self.attn = Attention(
|
290 |
-
query_dim=hidden_size,
|
291 |
-
cross_attention_dim=None,
|
292 |
-
heads=num_attention_heads,
|
293 |
-
dim_head=attention_head_dim,
|
294 |
-
bias=attention_bias,
|
295 |
-
)
|
296 |
-
|
297 |
-
self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
298 |
-
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
|
299 |
-
|
300 |
-
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
|
301 |
-
|
302 |
-
def forward(
|
303 |
-
self,
|
304 |
-
hidden_states: torch.Tensor,
|
305 |
-
temb: torch.Tensor,
|
306 |
-
attention_mask: Optional[torch.Tensor] = None,
|
307 |
-
) -> torch.Tensor:
|
308 |
-
norm_hidden_states = self.norm1(hidden_states)
|
309 |
-
|
310 |
-
attn_output = self.attn(
|
311 |
-
hidden_states=norm_hidden_states,
|
312 |
-
encoder_hidden_states=None,
|
313 |
-
attention_mask=attention_mask,
|
314 |
-
)
|
315 |
-
|
316 |
-
gate_msa, gate_mlp = self.norm_out(temb)
|
317 |
-
hidden_states = hidden_states + attn_output * gate_msa
|
318 |
-
|
319 |
-
ff_output = self.ff(self.norm2(hidden_states))
|
320 |
-
hidden_states = hidden_states + ff_output * gate_mlp
|
321 |
-
|
322 |
-
return hidden_states
|
323 |
-
|
324 |
-
|
325 |
-
class HunyuanVideoIndividualTokenRefiner(nn.Module):
|
326 |
-
def __init__(
|
327 |
-
self,
|
328 |
-
num_attention_heads: int,
|
329 |
-
attention_head_dim: int,
|
330 |
-
num_layers: int,
|
331 |
-
mlp_width_ratio: float = 4.0,
|
332 |
-
mlp_drop_rate: float = 0.0,
|
333 |
-
attention_bias: bool = True,
|
334 |
-
) -> None:
|
335 |
-
super().__init__()
|
336 |
-
|
337 |
-
self.refiner_blocks = nn.ModuleList(
|
338 |
-
[
|
339 |
-
HunyuanVideoIndividualTokenRefinerBlock(
|
340 |
-
num_attention_heads=num_attention_heads,
|
341 |
-
attention_head_dim=attention_head_dim,
|
342 |
-
mlp_width_ratio=mlp_width_ratio,
|
343 |
-
mlp_drop_rate=mlp_drop_rate,
|
344 |
-
attention_bias=attention_bias,
|
345 |
-
)
|
346 |
-
for _ in range(num_layers)
|
347 |
-
]
|
348 |
-
)
|
349 |
-
|
350 |
-
def forward(
|
351 |
-
self,
|
352 |
-
hidden_states: torch.Tensor,
|
353 |
-
temb: torch.Tensor,
|
354 |
-
attention_mask: Optional[torch.Tensor] = None,
|
355 |
-
) -> None:
|
356 |
-
self_attn_mask = None
|
357 |
-
if attention_mask is not None:
|
358 |
-
batch_size = attention_mask.shape[0]
|
359 |
-
seq_len = attention_mask.shape[1]
|
360 |
-
attention_mask = attention_mask.to(hidden_states.device).bool()
|
361 |
-
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
|
362 |
-
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
363 |
-
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
364 |
-
self_attn_mask[:, :, :, 0] = True
|
365 |
-
|
366 |
-
for block in self.refiner_blocks:
|
367 |
-
hidden_states = block(hidden_states, temb, self_attn_mask)
|
368 |
-
|
369 |
-
return hidden_states
|
370 |
-
|
371 |
-
|
372 |
-
class HunyuanVideoTokenRefiner(nn.Module):
|
373 |
-
def __init__(
|
374 |
-
self,
|
375 |
-
in_channels: int,
|
376 |
-
num_attention_heads: int,
|
377 |
-
attention_head_dim: int,
|
378 |
-
num_layers: int,
|
379 |
-
mlp_ratio: float = 4.0,
|
380 |
-
mlp_drop_rate: float = 0.0,
|
381 |
-
attention_bias: bool = True,
|
382 |
-
) -> None:
|
383 |
-
super().__init__()
|
384 |
-
|
385 |
-
hidden_size = num_attention_heads * attention_head_dim
|
386 |
-
|
387 |
-
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
388 |
-
embedding_dim=hidden_size, pooled_projection_dim=in_channels
|
389 |
-
)
|
390 |
-
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
|
391 |
-
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
|
392 |
-
num_attention_heads=num_attention_heads,
|
393 |
-
attention_head_dim=attention_head_dim,
|
394 |
-
num_layers=num_layers,
|
395 |
-
mlp_width_ratio=mlp_ratio,
|
396 |
-
mlp_drop_rate=mlp_drop_rate,
|
397 |
-
attention_bias=attention_bias,
|
398 |
-
)
|
399 |
-
|
400 |
-
def forward(
|
401 |
-
self,
|
402 |
-
hidden_states: torch.Tensor,
|
403 |
-
timestep: torch.LongTensor,
|
404 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
405 |
-
) -> torch.Tensor:
|
406 |
-
if attention_mask is None:
|
407 |
-
pooled_projections = hidden_states.mean(dim=1)
|
408 |
-
else:
|
409 |
-
original_dtype = hidden_states.dtype
|
410 |
-
mask_float = attention_mask.float().unsqueeze(-1)
|
411 |
-
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
|
412 |
-
pooled_projections = pooled_projections.to(original_dtype)
|
413 |
-
|
414 |
-
temb = self.time_text_embed(timestep, pooled_projections)
|
415 |
-
hidden_states = self.proj_in(hidden_states)
|
416 |
-
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
|
417 |
-
|
418 |
-
return hidden_states
|
419 |
-
|
420 |
-
|
421 |
-
class HunyuanVideoRotaryPosEmbed(nn.Module):
|
422 |
-
def __init__(self, rope_dim, theta):
|
423 |
-
super().__init__()
|
424 |
-
self.DT, self.DY, self.DX = rope_dim
|
425 |
-
self.theta = theta
|
426 |
-
|
427 |
-
@torch.no_grad()
|
428 |
-
def get_frequency(self, dim, pos):
|
429 |
-
T, H, W = pos.shape
|
430 |
-
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
|
431 |
-
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
|
432 |
-
return freqs.cos(), freqs.sin()
|
433 |
-
|
434 |
-
@torch.no_grad()
|
435 |
-
def forward_inner(self, frame_indices, height, width, device):
|
436 |
-
GT, GY, GX = torch.meshgrid(
|
437 |
-
frame_indices.to(device=device, dtype=torch.float32),
|
438 |
-
torch.arange(0, height, device=device, dtype=torch.float32),
|
439 |
-
torch.arange(0, width, device=device, dtype=torch.float32),
|
440 |
-
indexing="ij"
|
441 |
-
)
|
442 |
-
|
443 |
-
FCT, FST = self.get_frequency(self.DT, GT)
|
444 |
-
FCY, FSY = self.get_frequency(self.DY, GY)
|
445 |
-
FCX, FSX = self.get_frequency(self.DX, GX)
|
446 |
-
|
447 |
-
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
|
448 |
-
|
449 |
-
return result.to(device)
|
450 |
-
|
451 |
-
@torch.no_grad()
|
452 |
-
def forward(self, frame_indices, height, width, device):
|
453 |
-
frame_indices = frame_indices.unbind(0)
|
454 |
-
results = [self.forward_inner(f, height, width, device) for f in frame_indices]
|
455 |
-
results = torch.stack(results, dim=0)
|
456 |
-
return results
|
457 |
-
|
458 |
-
|
459 |
-
class AdaLayerNormZero(nn.Module):
|
460 |
-
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
461 |
-
super().__init__()
|
462 |
-
self.silu = nn.SiLU()
|
463 |
-
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
464 |
-
if norm_type == "layer_norm":
|
465 |
-
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
466 |
-
else:
|
467 |
-
raise ValueError(f"unknown norm_type {norm_type}")
|
468 |
-
|
469 |
-
def forward(
|
470 |
-
self,
|
471 |
-
x: torch.Tensor,
|
472 |
-
emb: Optional[torch.Tensor] = None,
|
473 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
474 |
-
emb = emb.unsqueeze(-2)
|
475 |
-
emb = self.linear(self.silu(emb))
|
476 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
|
477 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
478 |
-
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
479 |
-
|
480 |
-
|
481 |
-
class AdaLayerNormZeroSingle(nn.Module):
|
482 |
-
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
483 |
-
super().__init__()
|
484 |
-
|
485 |
-
self.silu = nn.SiLU()
|
486 |
-
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
487 |
-
if norm_type == "layer_norm":
|
488 |
-
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
489 |
-
else:
|
490 |
-
raise ValueError(f"unknown norm_type {norm_type}")
|
491 |
-
|
492 |
-
def forward(
|
493 |
-
self,
|
494 |
-
x: torch.Tensor,
|
495 |
-
emb: Optional[torch.Tensor] = None,
|
496 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
497 |
-
emb = emb.unsqueeze(-2)
|
498 |
-
emb = self.linear(self.silu(emb))
|
499 |
-
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
|
500 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
501 |
-
return x, gate_msa
|
502 |
-
|
503 |
-
|
504 |
-
class AdaLayerNormContinuous(nn.Module):
|
505 |
-
def __init__(
|
506 |
-
self,
|
507 |
-
embedding_dim: int,
|
508 |
-
conditioning_embedding_dim: int,
|
509 |
-
elementwise_affine=True,
|
510 |
-
eps=1e-5,
|
511 |
-
bias=True,
|
512 |
-
norm_type="layer_norm",
|
513 |
-
):
|
514 |
-
super().__init__()
|
515 |
-
self.silu = nn.SiLU()
|
516 |
-
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
|
517 |
-
if norm_type == "layer_norm":
|
518 |
-
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
519 |
-
else:
|
520 |
-
raise ValueError(f"unknown norm_type {norm_type}")
|
521 |
-
|
522 |
-
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
523 |
-
emb = emb.unsqueeze(-2)
|
524 |
-
emb = self.linear(self.silu(emb))
|
525 |
-
scale, shift = emb.chunk(2, dim=-1)
|
526 |
-
x = self.norm(x) * (1 + scale) + shift
|
527 |
-
return x
|
528 |
-
|
529 |
-
|
530 |
-
class HunyuanVideoSingleTransformerBlock(nn.Module):
|
531 |
-
def __init__(
|
532 |
-
self,
|
533 |
-
num_attention_heads: int,
|
534 |
-
attention_head_dim: int,
|
535 |
-
mlp_ratio: float = 4.0,
|
536 |
-
qk_norm: str = "rms_norm",
|
537 |
-
) -> None:
|
538 |
-
super().__init__()
|
539 |
-
|
540 |
-
hidden_size = num_attention_heads * attention_head_dim
|
541 |
-
mlp_dim = int(hidden_size * mlp_ratio)
|
542 |
-
|
543 |
-
self.attn = Attention(
|
544 |
-
query_dim=hidden_size,
|
545 |
-
cross_attention_dim=None,
|
546 |
-
dim_head=attention_head_dim,
|
547 |
-
heads=num_attention_heads,
|
548 |
-
out_dim=hidden_size,
|
549 |
-
bias=True,
|
550 |
-
processor=HunyuanAttnProcessorFlashAttnSingle(),
|
551 |
-
qk_norm=qk_norm,
|
552 |
-
eps=1e-6,
|
553 |
-
pre_only=True,
|
554 |
-
)
|
555 |
-
|
556 |
-
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
|
557 |
-
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
|
558 |
-
self.act_mlp = nn.GELU(approximate="tanh")
|
559 |
-
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
|
560 |
-
|
561 |
-
def forward(
|
562 |
-
self,
|
563 |
-
hidden_states: torch.Tensor,
|
564 |
-
encoder_hidden_states: torch.Tensor,
|
565 |
-
temb: torch.Tensor,
|
566 |
-
attention_mask: Optional[torch.Tensor] = None,
|
567 |
-
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
568 |
-
) -> torch.Tensor:
|
569 |
-
text_seq_length = encoder_hidden_states.shape[1]
|
570 |
-
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
571 |
-
|
572 |
-
residual = hidden_states
|
573 |
-
|
574 |
-
# 1. Input normalization
|
575 |
-
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
576 |
-
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
577 |
-
|
578 |
-
norm_hidden_states, norm_encoder_hidden_states = (
|
579 |
-
norm_hidden_states[:, :-text_seq_length, :],
|
580 |
-
norm_hidden_states[:, -text_seq_length:, :],
|
581 |
-
)
|
582 |
-
|
583 |
-
# 2. Attention
|
584 |
-
attn_output, context_attn_output = self.attn(
|
585 |
-
hidden_states=norm_hidden_states,
|
586 |
-
encoder_hidden_states=norm_encoder_hidden_states,
|
587 |
-
attention_mask=attention_mask,
|
588 |
-
image_rotary_emb=image_rotary_emb,
|
589 |
-
)
|
590 |
-
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
|
591 |
-
|
592 |
-
# 3. Modulation and residual connection
|
593 |
-
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
594 |
-
hidden_states = gate * self.proj_out(hidden_states)
|
595 |
-
hidden_states = hidden_states + residual
|
596 |
-
|
597 |
-
hidden_states, encoder_hidden_states = (
|
598 |
-
hidden_states[:, :-text_seq_length, :],
|
599 |
-
hidden_states[:, -text_seq_length:, :],
|
600 |
-
)
|
601 |
-
return hidden_states, encoder_hidden_states
|
602 |
-
|
603 |
-
|
604 |
-
class HunyuanVideoTransformerBlock(nn.Module):
|
605 |
-
def __init__(
|
606 |
-
self,
|
607 |
-
num_attention_heads: int,
|
608 |
-
attention_head_dim: int,
|
609 |
-
mlp_ratio: float,
|
610 |
-
qk_norm: str = "rms_norm",
|
611 |
-
) -> None:
|
612 |
-
super().__init__()
|
613 |
-
|
614 |
-
hidden_size = num_attention_heads * attention_head_dim
|
615 |
-
|
616 |
-
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
617 |
-
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
618 |
-
|
619 |
-
self.attn = Attention(
|
620 |
-
query_dim=hidden_size,
|
621 |
-
cross_attention_dim=None,
|
622 |
-
added_kv_proj_dim=hidden_size,
|
623 |
-
dim_head=attention_head_dim,
|
624 |
-
heads=num_attention_heads,
|
625 |
-
out_dim=hidden_size,
|
626 |
-
context_pre_only=False,
|
627 |
-
bias=True,
|
628 |
-
processor=HunyuanAttnProcessorFlashAttnDouble(),
|
629 |
-
qk_norm=qk_norm,
|
630 |
-
eps=1e-6,
|
631 |
-
)
|
632 |
-
|
633 |
-
self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
634 |
-
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
635 |
-
|
636 |
-
self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
637 |
-
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
638 |
-
|
639 |
-
def forward(
|
640 |
-
self,
|
641 |
-
hidden_states: torch.Tensor,
|
642 |
-
encoder_hidden_states: torch.Tensor,
|
643 |
-
temb: torch.Tensor,
|
644 |
-
attention_mask: Optional[torch.Tensor] = None,
|
645 |
-
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
646 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
647 |
-
# 1. Input normalization
|
648 |
-
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
649 |
-
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
|
650 |
-
|
651 |
-
# 2. Joint attention
|
652 |
-
attn_output, context_attn_output = self.attn(
|
653 |
-
hidden_states=norm_hidden_states,
|
654 |
-
encoder_hidden_states=norm_encoder_hidden_states,
|
655 |
-
attention_mask=attention_mask,
|
656 |
-
image_rotary_emb=freqs_cis,
|
657 |
-
)
|
658 |
-
|
659 |
-
# 3. Modulation and residual connection
|
660 |
-
hidden_states = hidden_states + attn_output * gate_msa
|
661 |
-
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
|
662 |
-
|
663 |
-
norm_hidden_states = self.norm2(hidden_states)
|
664 |
-
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
665 |
-
|
666 |
-
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
667 |
-
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
|
668 |
-
|
669 |
-
# 4. Feed-forward
|
670 |
-
ff_output = self.ff(norm_hidden_states)
|
671 |
-
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
672 |
-
|
673 |
-
hidden_states = hidden_states + gate_mlp * ff_output
|
674 |
-
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
|
675 |
-
|
676 |
-
return hidden_states, encoder_hidden_states
|
677 |
-
|
678 |
-
|
679 |
-
class ClipVisionProjection(nn.Module):
|
680 |
-
def __init__(self, in_channels, out_channels):
|
681 |
-
super().__init__()
|
682 |
-
self.up = nn.Linear(in_channels, out_channels * 3)
|
683 |
-
self.down = nn.Linear(out_channels * 3, out_channels)
|
684 |
-
|
685 |
-
def forward(self, x):
|
686 |
-
projected_x = self.down(nn.functional.silu(self.up(x)))
|
687 |
-
return projected_x
|
688 |
-
|
689 |
-
|
690 |
-
class HunyuanVideoPatchEmbed(nn.Module):
|
691 |
-
def __init__(self, patch_size, in_chans, embed_dim):
|
692 |
-
super().__init__()
|
693 |
-
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
694 |
-
|
695 |
-
|
696 |
-
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
|
697 |
-
def __init__(self, inner_dim):
|
698 |
-
super().__init__()
|
699 |
-
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
700 |
-
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
|
701 |
-
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
|
702 |
-
|
703 |
-
@torch.no_grad()
|
704 |
-
def initialize_weight_from_another_conv3d(self, another_layer):
|
705 |
-
weight = another_layer.weight.detach().clone()
|
706 |
-
bias = another_layer.bias.detach().clone()
|
707 |
-
|
708 |
-
sd = {
|
709 |
-
'proj.weight': weight.clone(),
|
710 |
-
'proj.bias': bias.clone(),
|
711 |
-
'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
|
712 |
-
'proj_2x.bias': bias.clone(),
|
713 |
-
'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
|
714 |
-
'proj_4x.bias': bias.clone(),
|
715 |
-
}
|
716 |
-
|
717 |
-
sd = {k: v.clone() for k, v in sd.items()}
|
718 |
-
|
719 |
-
self.load_state_dict(sd)
|
720 |
-
return
|
721 |
-
|
722 |
-
|
723 |
-
class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
724 |
-
@register_to_config
|
725 |
-
def __init__(
|
726 |
-
self,
|
727 |
-
in_channels: int = 16,
|
728 |
-
out_channels: int = 16,
|
729 |
-
num_attention_heads: int = 24,
|
730 |
-
attention_head_dim: int = 128,
|
731 |
-
num_layers: int = 20,
|
732 |
-
num_single_layers: int = 40,
|
733 |
-
num_refiner_layers: int = 2,
|
734 |
-
mlp_ratio: float = 4.0,
|
735 |
-
patch_size: int = 2,
|
736 |
-
patch_size_t: int = 1,
|
737 |
-
qk_norm: str = "rms_norm",
|
738 |
-
guidance_embeds: bool = True,
|
739 |
-
text_embed_dim: int = 4096,
|
740 |
-
pooled_projection_dim: int = 768,
|
741 |
-
rope_theta: float = 256.0,
|
742 |
-
rope_axes_dim: Tuple[int] = (16, 56, 56),
|
743 |
-
has_image_proj=False,
|
744 |
-
image_proj_dim=1152,
|
745 |
-
has_clean_x_embedder=False,
|
746 |
-
) -> None:
|
747 |
-
super().__init__()
|
748 |
-
|
749 |
-
inner_dim = num_attention_heads * attention_head_dim
|
750 |
-
out_channels = out_channels or in_channels
|
751 |
-
|
752 |
-
# 1. Latent and condition embedders
|
753 |
-
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
|
754 |
-
self.context_embedder = HunyuanVideoTokenRefiner(
|
755 |
-
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
|
756 |
-
)
|
757 |
-
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
758 |
-
|
759 |
-
self.clean_x_embedder = None
|
760 |
-
self.image_projection = None
|
761 |
-
|
762 |
-
# 2. RoPE
|
763 |
-
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
|
764 |
-
|
765 |
-
# 3. Dual stream transformer blocks
|
766 |
-
self.transformer_blocks = nn.ModuleList(
|
767 |
-
[
|
768 |
-
HunyuanVideoTransformerBlock(
|
769 |
-
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
770 |
-
)
|
771 |
-
for _ in range(num_layers)
|
772 |
-
]
|
773 |
-
)
|
774 |
-
|
775 |
-
# 4. Single stream transformer blocks
|
776 |
-
self.single_transformer_blocks = nn.ModuleList(
|
777 |
-
[
|
778 |
-
HunyuanVideoSingleTransformerBlock(
|
779 |
-
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
780 |
-
)
|
781 |
-
for _ in range(num_single_layers)
|
782 |
-
]
|
783 |
-
)
|
784 |
-
|
785 |
-
# 5. Output projection
|
786 |
-
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
787 |
-
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
|
788 |
-
|
789 |
-
self.inner_dim = inner_dim
|
790 |
-
self.use_gradient_checkpointing = False
|
791 |
-
self.enable_teacache = False
|
792 |
-
|
793 |
-
if has_image_proj:
|
794 |
-
self.install_image_projection(image_proj_dim)
|
795 |
-
|
796 |
-
if has_clean_x_embedder:
|
797 |
-
self.install_clean_x_embedder()
|
798 |
-
|
799 |
-
self.high_quality_fp32_output_for_inference = False
|
800 |
-
|
801 |
-
def install_image_projection(self, in_channels):
|
802 |
-
self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
|
803 |
-
self.config['has_image_proj'] = True
|
804 |
-
self.config['image_proj_dim'] = in_channels
|
805 |
-
|
806 |
-
def install_clean_x_embedder(self):
|
807 |
-
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
|
808 |
-
self.config['has_clean_x_embedder'] = True
|
809 |
-
|
810 |
-
def enable_gradient_checkpointing(self):
|
811 |
-
self.use_gradient_checkpointing = True
|
812 |
-
print('self.use_gradient_checkpointing = True')
|
813 |
-
|
814 |
-
def disable_gradient_checkpointing(self):
|
815 |
-
self.use_gradient_checkpointing = False
|
816 |
-
print('self.use_gradient_checkpointing = False')
|
817 |
-
|
818 |
-
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
|
819 |
-
self.enable_teacache = enable_teacache
|
820 |
-
self.cnt = 0
|
821 |
-
self.num_steps = num_steps
|
822 |
-
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
|
823 |
-
self.accumulated_rel_l1_distance = 0
|
824 |
-
self.previous_modulated_input = None
|
825 |
-
self.previous_residual = None
|
826 |
-
self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
|
827 |
-
|
828 |
-
def gradient_checkpointing_method(self, block, *args):
|
829 |
-
if self.use_gradient_checkpointing:
|
830 |
-
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
|
831 |
-
else:
|
832 |
-
result = block(*args)
|
833 |
-
return result
|
834 |
-
|
835 |
-
def process_input_hidden_states(
|
836 |
-
self,
|
837 |
-
latents, latent_indices=None,
|
838 |
-
clean_latents=None, clean_latent_indices=None,
|
839 |
-
clean_latents_2x=None, clean_latent_2x_indices=None,
|
840 |
-
clean_latents_4x=None, clean_latent_4x_indices=None
|
841 |
-
):
|
842 |
-
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
|
843 |
-
B, C, T, H, W = hidden_states.shape
|
844 |
-
|
845 |
-
if latent_indices is None:
|
846 |
-
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
|
847 |
-
|
848 |
-
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
849 |
-
|
850 |
-
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
|
851 |
-
rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
|
852 |
-
|
853 |
-
if clean_latents is not None and clean_latent_indices is not None:
|
854 |
-
clean_latents = clean_latents.to(hidden_states)
|
855 |
-
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
|
856 |
-
clean_latents = clean_latents.flatten(2).transpose(1, 2)
|
857 |
-
|
858 |
-
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
|
859 |
-
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
|
860 |
-
|
861 |
-
hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
|
862 |
-
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
|
863 |
-
|
864 |
-
if clean_latents_2x is not None and clean_latent_2x_indices is not None:
|
865 |
-
clean_latents_2x = clean_latents_2x.to(hidden_states)
|
866 |
-
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
|
867 |
-
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
|
868 |
-
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
869 |
-
|
870 |
-
clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
|
871 |
-
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
|
872 |
-
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
|
873 |
-
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
|
874 |
-
|
875 |
-
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
|
876 |
-
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
|
877 |
-
|
878 |
-
if clean_latents_4x is not None and clean_latent_4x_indices is not None:
|
879 |
-
clean_latents_4x = clean_latents_4x.to(hidden_states)
|
880 |
-
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
|
881 |
-
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
|
882 |
-
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
883 |
-
|
884 |
-
clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
|
885 |
-
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
|
886 |
-
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
|
887 |
-
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
|
888 |
-
|
889 |
-
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
|
890 |
-
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
|
891 |
-
|
892 |
-
return hidden_states, rope_freqs
|
893 |
-
|
894 |
-
def forward(
|
895 |
-
self,
|
896 |
-
hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
|
897 |
-
latent_indices=None,
|
898 |
-
clean_latents=None, clean_latent_indices=None,
|
899 |
-
clean_latents_2x=None, clean_latent_2x_indices=None,
|
900 |
-
clean_latents_4x=None, clean_latent_4x_indices=None,
|
901 |
-
image_embeddings=None,
|
902 |
-
attention_kwargs=None, return_dict=True
|
903 |
-
):
|
904 |
-
|
905 |
-
if attention_kwargs is None:
|
906 |
-
attention_kwargs = {}
|
907 |
-
|
908 |
-
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
909 |
-
p, p_t = self.config['patch_size'], self.config['patch_size_t']
|
910 |
-
post_patch_num_frames = num_frames // p_t
|
911 |
-
post_patch_height = height // p
|
912 |
-
post_patch_width = width // p
|
913 |
-
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
|
914 |
-
|
915 |
-
hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
|
916 |
-
|
917 |
-
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
|
918 |
-
encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
|
919 |
-
|
920 |
-
if self.image_projection is not None:
|
921 |
-
assert image_embeddings is not None, 'You must use image embeddings!'
|
922 |
-
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
|
923 |
-
extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
|
924 |
-
|
925 |
-
# must cat before (not after) encoder_hidden_states, due to attn masking
|
926 |
-
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
|
927 |
-
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
|
928 |
-
|
929 |
-
with torch.no_grad():
|
930 |
-
if batch_size == 1:
|
931 |
-
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
|
932 |
-
# If they are not same, then their impls are wrong. Ours are always the correct one.
|
933 |
-
text_len = encoder_attention_mask.sum().item()
|
934 |
-
encoder_hidden_states = encoder_hidden_states[:, :text_len]
|
935 |
-
attention_mask = None, None, None, None
|
936 |
-
else:
|
937 |
-
img_seq_len = hidden_states.shape[1]
|
938 |
-
txt_seq_len = encoder_hidden_states.shape[1]
|
939 |
-
|
940 |
-
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
|
941 |
-
cu_seqlens_kv = cu_seqlens_q
|
942 |
-
max_seqlen_q = img_seq_len + txt_seq_len
|
943 |
-
max_seqlen_kv = max_seqlen_q
|
944 |
-
|
945 |
-
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
|
946 |
-
|
947 |
-
if self.enable_teacache:
|
948 |
-
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
|
949 |
-
|
950 |
-
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
951 |
-
should_calc = True
|
952 |
-
self.accumulated_rel_l1_distance = 0
|
953 |
-
else:
|
954 |
-
curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
|
955 |
-
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
|
956 |
-
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
|
957 |
-
|
958 |
-
if should_calc:
|
959 |
-
self.accumulated_rel_l1_distance = 0
|
960 |
-
|
961 |
-
self.previous_modulated_input = modulated_inp
|
962 |
-
self.cnt += 1
|
963 |
-
|
964 |
-
if self.cnt == self.num_steps:
|
965 |
-
self.cnt = 0
|
966 |
-
|
967 |
-
if not should_calc:
|
968 |
-
hidden_states = hidden_states + self.previous_residual
|
969 |
-
else:
|
970 |
-
ori_hidden_states = hidden_states.clone()
|
971 |
-
|
972 |
-
for block_id, block in enumerate(self.transformer_blocks):
|
973 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
974 |
-
block,
|
975 |
-
hidden_states,
|
976 |
-
encoder_hidden_states,
|
977 |
-
temb,
|
978 |
-
attention_mask,
|
979 |
-
rope_freqs
|
980 |
-
)
|
981 |
-
|
982 |
-
for block_id, block in enumerate(self.single_transformer_blocks):
|
983 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
984 |
-
block,
|
985 |
-
hidden_states,
|
986 |
-
encoder_hidden_states,
|
987 |
-
temb,
|
988 |
-
attention_mask,
|
989 |
-
rope_freqs
|
990 |
-
)
|
991 |
-
|
992 |
-
self.previous_residual = hidden_states - ori_hidden_states
|
993 |
-
else:
|
994 |
-
for block_id, block in enumerate(self.transformer_blocks):
|
995 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
996 |
-
block,
|
997 |
-
hidden_states,
|
998 |
-
encoder_hidden_states,
|
999 |
-
temb,
|
1000 |
-
attention_mask,
|
1001 |
-
rope_freqs
|
1002 |
-
)
|
1003 |
-
|
1004 |
-
for block_id, block in enumerate(self.single_transformer_blocks):
|
1005 |
-
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
1006 |
-
block,
|
1007 |
-
hidden_states,
|
1008 |
-
encoder_hidden_states,
|
1009 |
-
temb,
|
1010 |
-
attention_mask,
|
1011 |
-
rope_freqs
|
1012 |
-
)
|
1013 |
-
|
1014 |
-
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
|
1015 |
-
|
1016 |
-
hidden_states = hidden_states[:, -original_context_length:, :]
|
1017 |
-
|
1018 |
-
if self.high_quality_fp32_output_for_inference:
|
1019 |
-
hidden_states = hidden_states.to(dtype=torch.float32)
|
1020 |
-
if self.proj_out.weight.dtype != torch.float32:
|
1021 |
-
self.proj_out.to(dtype=torch.float32)
|
1022 |
-
|
1023 |
-
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
|
1024 |
-
|
1025 |
-
hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
|
1026 |
-
t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
|
1027 |
-
pt=p_t, ph=p, pw=p)
|
1028 |
-
|
1029 |
-
if return_dict:
|
1030 |
-
return Transformer2DModelOutput(sample=hidden_states)
|
1031 |
-
|
1032 |
-
return hidden_states,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|