Spaces:
Running
on
Zero
Running
on
Zero
a better model
Browse files- app.py +15 -8
- dreamo/dreamo_pipeline.py +28 -6
- dreamo/utils.py +10 -0
app.py
CHANGED
@@ -28,19 +28,20 @@ from PIL import Image
|
|
28 |
from torchvision.transforms.functional import normalize
|
29 |
|
30 |
from dreamo.dreamo_pipeline import DreamOPipeline
|
31 |
-
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img
|
32 |
from tools import BEN2
|
33 |
|
34 |
parser = argparse.ArgumentParser()
|
35 |
parser.add_argument('--port', type=int, default=8080)
|
|
|
36 |
args = parser.parse_args()
|
37 |
|
38 |
huggingface_hub.login(os.getenv('HF_TOKEN'))
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
class Generator:
|
46 |
def __init__(self):
|
@@ -63,7 +64,7 @@ class Generator:
|
|
63 |
# load dreamo
|
64 |
model_root = 'black-forest-labs/FLUX.1-dev'
|
65 |
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
|
66 |
-
dreamo_pipeline.load_dreamo_model(device, use_turbo=
|
67 |
self.dreamo_pipeline = dreamo_pipeline.to(device)
|
68 |
|
69 |
@torch.no_grad()
|
@@ -126,10 +127,12 @@ def generate_image(
|
|
126 |
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
|
127 |
if ref_image is not None:
|
128 |
if ref_task == "id":
|
|
|
129 |
ref_image = generator.get_align_face(ref_image)
|
130 |
elif ref_task != "style":
|
131 |
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image))
|
132 |
-
|
|
|
133 |
debug_images.append(ref_image)
|
134 |
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0
|
135 |
ref_image = 2 * ref_image - 1.0
|
@@ -170,9 +173,13 @@ _HEADER_ = '''
|
|
170 |
<p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2504.16915' target='_blank'>DreamO: A Unified Framework for Image Customization</a> | Codes: <a href='https://github.com/bytedance/DreamO' target='_blank'>GitHub</a></p>
|
171 |
</div>
|
172 |
|
|
|
|
|
|
|
173 |
❗️❗️❗️**User Guide:**
|
174 |
- The most important thing to do first is to try the examples provided below the demo, which will help you better understand the capabilities of the DreamO model and the types of tasks it currently supports
|
175 |
- For each input, please select the appropriate task type. For general objects, characters, or clothing, choose IP — we will remove the background from the input image. If you select ID, we will extract the face region from the input image (similar to PuLID). If you select Style, the background will be preserved, and you must prepend the prompt with the instruction: 'generate a same style image.' to activate the style task.
|
|
|
176 |
- To accelerate inference, we adopt FLUX-turbo LoRA, which reduces the sampling steps from 25 to 12 compared to FLUX-dev. Additionally, we distill a CFG LoRA, achieving nearly a twofold reduction in steps by eliminating the need for true CFG
|
177 |
|
178 |
''' # noqa E501
|
@@ -249,7 +256,7 @@ def create_demo():
|
|
249 |
'ip',
|
250 |
'ip',
|
251 |
'a purple toy holding a sign saying "DreamO", on the mountain',
|
252 |
-
|
253 |
],
|
254 |
[
|
255 |
'example_inputs/perfume.png',
|
|
|
28 |
from torchvision.transforms.functional import normalize
|
29 |
|
30 |
from dreamo.dreamo_pipeline import DreamOPipeline
|
31 |
+
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img, resize_numpy_image_long
|
32 |
from tools import BEN2
|
33 |
|
34 |
parser = argparse.ArgumentParser()
|
35 |
parser.add_argument('--port', type=int, default=8080)
|
36 |
+
parser.add_argument('--no_turbo', action='store_true')
|
37 |
args = parser.parse_args()
|
38 |
|
39 |
huggingface_hub.login(os.getenv('HF_TOKEN'))
|
40 |
|
41 |
+
try:
|
42 |
+
shutil.rmtree('gradio_cached_examples')
|
43 |
+
except FileNotFoundError:
|
44 |
+
print("cache folder not exist")
|
45 |
|
46 |
class Generator:
|
47 |
def __init__(self):
|
|
|
64 |
# load dreamo
|
65 |
model_root = 'black-forest-labs/FLUX.1-dev'
|
66 |
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
|
67 |
+
dreamo_pipeline.load_dreamo_model(device, use_turbo=not args.no_turbo)
|
68 |
self.dreamo_pipeline = dreamo_pipeline.to(device)
|
69 |
|
70 |
@torch.no_grad()
|
|
|
127 |
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
|
128 |
if ref_image is not None:
|
129 |
if ref_task == "id":
|
130 |
+
ref_image = resize_numpy_image_long(ref_image, 1024)
|
131 |
ref_image = generator.get_align_face(ref_image)
|
132 |
elif ref_task != "style":
|
133 |
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image))
|
134 |
+
if ref_task != "id":
|
135 |
+
ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res)
|
136 |
debug_images.append(ref_image)
|
137 |
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0
|
138 |
ref_image = 2 * ref_image - 1.0
|
|
|
173 |
<p style="font-size: 1rem; margin-bottom: 1.5rem;">Paper: <a href='https://arxiv.org/abs/2504.16915' target='_blank'>DreamO: A Unified Framework for Image Customization</a> | Codes: <a href='https://github.com/bytedance/DreamO' target='_blank'>GitHub</a></p>
|
174 |
</div>
|
175 |
|
176 |
+
🚩 Update Notes:
|
177 |
+
- 2025.05.11: We have updated the model to mitigate over-saturation and plastic-face issues. The new version shows consistent improvements over the previous release.
|
178 |
+
|
179 |
❗️❗️❗️**User Guide:**
|
180 |
- The most important thing to do first is to try the examples provided below the demo, which will help you better understand the capabilities of the DreamO model and the types of tasks it currently supports
|
181 |
- For each input, please select the appropriate task type. For general objects, characters, or clothing, choose IP — we will remove the background from the input image. If you select ID, we will extract the face region from the input image (similar to PuLID). If you select Style, the background will be preserved, and you must prepend the prompt with the instruction: 'generate a same style image.' to activate the style task.
|
182 |
+
- The most import hyperparameter in this demo is the guidance scale, which is set to 3.5 by default. If you notice that faces appear overly glossy or unrealistic—especially in ID tasks—you can lower the guidance scale (e.g., to 3). Conversely, if text rendering is poor or limb distortion occurs, increasing the guidance scale (e.g., to 4) may help.
|
183 |
- To accelerate inference, we adopt FLUX-turbo LoRA, which reduces the sampling steps from 25 to 12 compared to FLUX-dev. Additionally, we distill a CFG LoRA, achieving nearly a twofold reduction in steps by eliminating the need for true CFG
|
184 |
|
185 |
''' # noqa E501
|
|
|
256 |
'ip',
|
257 |
'ip',
|
258 |
'a purple toy holding a sign saying "DreamO", on the mountain',
|
259 |
+
10441727852953907380,
|
260 |
],
|
261 |
[
|
262 |
'example_inputs/perfume.png',
|
dreamo/dreamo_pipeline.py
CHANGED
@@ -44,24 +44,35 @@ class DreamOPipeline(FluxPipeline):
|
|
44 |
self.idx_embedding = nn.Embedding(10, 3072)
|
45 |
|
46 |
def load_dreamo_model(self, device, use_turbo=True):
|
|
|
47 |
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo.safetensors', local_dir='models')
|
48 |
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_cfg_distill.safetensors', local_dir='models')
|
|
|
|
|
49 |
dreamo_lora = load_file('models/dreamo.safetensors')
|
50 |
cfg_distill_lora = load_file('models/dreamo_cfg_distill.safetensors')
|
|
|
|
|
|
|
|
|
51 |
self.t5_embedding.weight.data = dreamo_lora.pop('dreamo_t5_embedding.weight')[-10:]
|
52 |
self.task_embedding.weight.data = dreamo_lora.pop('dreamo_task_embedding.weight')
|
53 |
self.idx_embedding.weight.data = dreamo_lora.pop('dreamo_idx_embedding.weight')
|
54 |
self._prepare_t5()
|
55 |
|
|
|
56 |
dreamo_diffuser_lora = convert_flux_lora_to_diffusers(dreamo_lora)
|
57 |
-
cfg_diffuser_lora = convert_flux_lora_to_diffusers(cfg_distill_lora)
|
58 |
adapter_names = ['dreamo']
|
59 |
adapter_weights = [1]
|
60 |
self.load_lora_weights(dreamo_diffuser_lora, adapter_name='dreamo')
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
if use_turbo:
|
66 |
self.load_lora_weights(
|
67 |
hf_hub_download(
|
@@ -72,7 +83,18 @@ class DreamOPipeline(FluxPipeline):
|
|
72 |
adapter_names.append('turbo')
|
73 |
adapter_weights.append(1)
|
74 |
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
self.t5_embedding = self.t5_embedding.to(device)
|
78 |
self.task_embedding = self.task_embedding.to(device)
|
|
|
44 |
self.idx_embedding = nn.Embedding(10, 3072)
|
45 |
|
46 |
def load_dreamo_model(self, device, use_turbo=True):
|
47 |
+
# download models and load file
|
48 |
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo.safetensors', local_dir='models')
|
49 |
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_cfg_distill.safetensors', local_dir='models')
|
50 |
+
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_quality_lora_pos.safetensors', local_dir='models')
|
51 |
+
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_quality_lora_neg.safetensors', local_dir='models')
|
52 |
dreamo_lora = load_file('models/dreamo.safetensors')
|
53 |
cfg_distill_lora = load_file('models/dreamo_cfg_distill.safetensors')
|
54 |
+
quality_lora_pos = load_file('models/dreamo_quality_lora_pos.safetensors')
|
55 |
+
quality_lora_neg = load_file('models/dreamo_quality_lora_neg.safetensors')
|
56 |
+
|
57 |
+
# load embedding
|
58 |
self.t5_embedding.weight.data = dreamo_lora.pop('dreamo_t5_embedding.weight')[-10:]
|
59 |
self.task_embedding.weight.data = dreamo_lora.pop('dreamo_task_embedding.weight')
|
60 |
self.idx_embedding.weight.data = dreamo_lora.pop('dreamo_idx_embedding.weight')
|
61 |
self._prepare_t5()
|
62 |
|
63 |
+
# main lora
|
64 |
dreamo_diffuser_lora = convert_flux_lora_to_diffusers(dreamo_lora)
|
|
|
65 |
adapter_names = ['dreamo']
|
66 |
adapter_weights = [1]
|
67 |
self.load_lora_weights(dreamo_diffuser_lora, adapter_name='dreamo')
|
68 |
+
|
69 |
+
# cfg lora to avoid true image cfg
|
70 |
+
cfg_diffuser_lora = convert_flux_lora_to_diffusers(cfg_distill_lora)
|
71 |
+
self.load_lora_weights(cfg_diffuser_lora, adapter_name='cfg')
|
72 |
+
adapter_names.append('cfg')
|
73 |
+
adapter_weights.append(1)
|
74 |
+
|
75 |
+
# turbo lora to speed up (from 25+ step to 12 step)
|
76 |
if use_turbo:
|
77 |
self.load_lora_weights(
|
78 |
hf_hub_download(
|
|
|
83 |
adapter_names.append('turbo')
|
84 |
adapter_weights.append(1)
|
85 |
|
86 |
+
# quality loras, one pos, one neg
|
87 |
+
quality_lora_pos = convert_flux_lora_to_diffusers(quality_lora_pos)
|
88 |
+
self.load_lora_weights(quality_lora_pos, adapter_name='quality_pos')
|
89 |
+
adapter_names.append('quality_pos')
|
90 |
+
adapter_weights.append(0.15)
|
91 |
+
quality_lora_neg = convert_flux_lora_to_diffusers(quality_lora_neg)
|
92 |
+
self.load_lora_weights(quality_lora_neg, adapter_name='quality_neg')
|
93 |
+
adapter_names.append('quality_neg')
|
94 |
+
adapter_weights.append(-0.8)
|
95 |
+
|
96 |
+
self.set_adapters(adapter_names, adapter_weights)
|
97 |
+
self.fuse_lora(adapter_names=adapter_names, lora_scale=1)
|
98 |
|
99 |
self.t5_embedding = self.t5_embedding.to(device)
|
100 |
self.task_embedding = self.task_embedding.to(device)
|
dreamo/utils.py
CHANGED
@@ -117,6 +117,16 @@ def resize_numpy_image_area(image, area=512 * 512):
|
|
117 |
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
|
118 |
return image
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
# reference: https://github.com/huggingface/diffusers/pull/9295/files
|
122 |
def convert_flux_lora_to_diffusers(old_state_dict):
|
|
|
117 |
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
|
118 |
return image
|
119 |
|
120 |
+
def resize_numpy_image_long(image, long_edge=768):
|
121 |
+
h, w = image.shape[:2]
|
122 |
+
if max(h, w) <= long_edge:
|
123 |
+
return image
|
124 |
+
k = long_edge / max(h, w)
|
125 |
+
h = int(h * k)
|
126 |
+
w = int(w * k)
|
127 |
+
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
|
128 |
+
return image
|
129 |
+
|
130 |
|
131 |
# reference: https://github.com/huggingface/diffusers/pull/9295/files
|
132 |
def convert_flux_lora_to_diffusers(old_state_dict):
|