File size: 5,185 Bytes
26ca8c8
9db6da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f065a36
 
 
 
 
26ca8c8
 
5b4cfb6
 
26ca8c8
 
5b4cfb6
 
 
 
9db6da0
5b4cfb6
 
 
9db6da0
 
5b4cfb6
 
f065a36
5b4cfb6
 
 
 
9db6da0
5b4cfb6
f065a36
5b4cfb6
 
 
 
 
9db6da0
5b4cfb6
 
 
26ca8c8
f065a36
5b4cfb6
 
 
 
26ca8c8
 
 
 
 
 
 
5b4cfb6
9db6da0
5b4cfb6
f065a36
9db6da0
 
 
 
 
 
f065a36
 
 
9db6da0
f065a36
9db6da0
f065a36
 
 
5b4cfb6
 
9db6da0
5b4cfb6
f065a36
5b4cfb6
 
9db6da0
 
 
 
5b4cfb6
 
 
9db6da0
5b4cfb6
 
9db6da0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26ca8c8
5b4cfb6
9db6da0
5b4cfb6
9db6da0
 
5b4cfb6
9db6da0
 
 
 
 
26ca8c8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
Square Theory Generator (10 best variations)
===========================================
2025โ€‘05โ€‘28ย v3 โ— ํ•œ ์ž…๋ ฅ โ†’ ์šฐ์ˆ˜๋„ ์ˆœ 10๊ฐ€์ง€ ๊ฒฐ๊ณผ
------------------------------------------------
๋ณ€๊ฒฝ ์š”์•ฝ
---------
1. **LLM ํ•œย ํšŒ ํ˜ธ์ถœ๋กœ 10๊ฐœ์˜ ์‚ฌ๊ฐํ˜• ์ œ์•ˆ**
   * JSON ๋ฐฐ์—ด ํ˜•ํƒœ๋กœ ๋ฐ˜ํ™˜, ํ’ˆ์งˆ์ด ๋†’์€ ์ˆœ์„œ๋กœ ์ •๋ ฌ (1ย โ€“ย 10)
2. **์ถœ๋ ฅ**
   * โ‘  1์œ„ ์ œ์•ˆ์˜ ์‚ฌ๊ฐํ˜• ๋„์‹(Plot)
   * โ‘ก 10๊ฐœ ์ œ์•ˆ์„ ๋งˆํฌ๋‹ค์šด ๋ฆฌ์ŠคํŠธ๋กœ ์ •๋ฆฌํ•˜์—ฌ ํ‘œ์‹œ
3. **UI ๊ฐ„์†Œํ™”** : seed ์ž…๋ ฅย +ย ์‹คํ–‰ ๋ฒ„ํŠผ + Plot + Markdown
4. **์—๋Ÿฌ ์ฒ˜๋ฆฌ ๊ฐ•ํ™”**

์‹คํ–‰๋ฒ•
------
```bash
pip install --upgrade gradio matplotlib openai
export OPENAI_API_KEY="sk-..."
python square_theory_gradio.py
```
"""

import os
import json
import gradio as gr
import matplotlib.pyplot as plt
from matplotlib import patches, font_manager, rcParams
from openai import OpenAI

# -------------------------------------------------
# 0. ํ•œ๊ธ€ ํฐํŠธ ์„ค์ •
# -------------------------------------------------

def _set_korean_font():
    for cand in ("Malgun Gothic", "NanumGothic", "AppleGothic", "DejaVu Sans"):
        if cand in {f.name for f in font_manager.fontManager.ttflist}:
            rcParams["font.family"] = cand
            break
    rcParams["axes.unicode_minus"] = False

_set_korean_font()

# -------------------------------------------------
# 1. OpenAI ํด๋ผ์ด์–ธํŠธ
# -------------------------------------------------
if not os.getenv("OPENAI_API_KEY"):
    raise EnvironmentError("OPENAI_API_KEY ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋ฅผ ์„ค์ •ํ•˜์„ธ์š”.")

client = OpenAI()

# -------------------------------------------------
# 2. Square Diagram
# -------------------------------------------------

def draw_square(words):
    fig, ax = plt.subplots(figsize=(4, 4))
    ax.add_patch(patches.Rectangle((0, 0), 1, 1, fill=False, linewidth=2))
    ax.text(-0.05, 1.05, words["tl"], ha="right", va="bottom", fontsize=14, fontweight="bold")
    ax.text(1.05, 1.05, words["tr"], ha="left", va="bottom", fontsize=14, fontweight="bold")
    ax.text(1.05, -0.05, words["br"], ha="left", va="top", fontsize=14, fontweight="bold")
    ax.text(-0.05, -0.05, words["bl"], ha="right", va="top", fontsize=14, fontweight="bold")
    ax.set_xticks([])
    ax.set_yticks([])
    ax.set_xlim(-0.2, 1.2)
    ax.set_ylim(-0.2, 1.2)
    ax.set_aspect("equal")
    return fig

# -------------------------------------------------
# 3. LLM Prompt & Call
# -------------------------------------------------
SYSTEM_PROMPT = (
    "๋„ˆ๋Š” ํ•œ๊ตญ์–ด ์นดํ”ผยท๋ธŒ๋žœ๋“œ ๋„ค์ด๋ฐ ์ „๋ฌธ๊ฐ€์ด์ž Square Theory ๋„์šฐ๋ฏธ๋‹ค. "
    "์‚ฌ์šฉ์ž๊ฐ€ ์ค€ ํ•˜๋‚˜์˜ ๋‹จ์–ด(tl)๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ’ˆ์งˆ์ด ๊ฐ€์žฅ ๋›ฐ์–ด๋‚œ ๊ฒƒ๋ถ€ํ„ฐ 10๊ฐœ์˜ ์ œ์•ˆ์„ JSON ๋ฐฐ์—ด๋กœ ๋ฐ˜ํ™˜ํ•ด๋ผ. "
    "๊ฐ ๋ฐฐ์—ด ์›์†Œ๋Š” tl, tr, br, bl, top_phrase, bottom_phrase, slogan, brand ํ•„๋“œ๋ฅผ ๊ฐ€์ง€๋ฉฐ, "
    "์‚ฌ๊ฐํ˜• ๋„ค ๊ผญ์ง“์ (tl>tr>br>bl)๊ณผ ๋‘ ํ‘œํ˜„ยท์Šฌ๋กœ๊ฑดยท๋ธŒ๋žœ๋“œ ๋„ค์ž„์ด ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์—ฐ๊ฒฐ๋ผ์•ผ ํ•œ๋‹ค. "
    "๋ฐฐ์—ด์€ ์ตœ๊ณ ์˜ ์ œ์•ˆ์ด index 0, ๊ทธ๋‹ค์Œ์ด index 1 โ€ฆ 9 ์ˆœ์„œ์—ฌ์•ผ ํ•œ๋‹ค. "
    "๊ฒฐ๊ณผ๋Š” JSON ์™ธ ๋‹ค๋ฅธ ํ…์ŠคํŠธ๋ฅผ ํฌํ•จํ•˜๋ฉด ์•ˆ ๋œ๋‹ค."
)


def call_llm(seed: str):
    resp = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {"role": "system", "content": SYSTEM_PROMPT},
            {"role": "user", "content": seed},
        ],
        temperature=0.9,
        max_tokens=1024,
    )
    raw = resp.choices[0].message.content.strip()
    try:
        data = json.loads(raw)
        if not isinstance(data, list) or len(data) != 10:
            raise ValueError("JSON ๋ฐฐ์—ด ๊ธธ์ด๊ฐ€ 10์ด ์•„๋‹˜")
    except Exception as exc:
        raise ValueError(f"LLM JSON ํŒŒ์‹ฑ ์‹คํŒจ: {exc}\n์›๋ฌธ: {raw[:300]} โ€ฆ")
    return data

# -------------------------------------------------
# 4. Gradio callback
# -------------------------------------------------

def generate(seed_word: str):
    results = call_llm(seed_word)
    # 1์œ„ ๋„์‹
    fig = draw_square({k: results[0][k] for k in ("tl", "tr", "br", "bl")})

    # ๋ฆฌ์ŠคํŠธ ๋งˆํฌ๋‹ค์šด
    md_lines = []
    for idx, item in enumerate(results, 1):
        md_lines.append(
            f"### {idx}. {item['top_phrase']} / {item['bottom_phrase']}\n"
            f"- **์Šฌ๋กœ๊ฑด**: {item['slogan']}\n"
            f"- **๋ธŒ๋žœ๋“œ ๋„ค์ž„**: {item['brand']}\n"
            f"- (tl={item['tl']}, tr={item['tr']}, br={item['br']}, bl={item['bl']})\n"
        )
    markdown_out = "\n".join(md_lines)
    return fig, markdown_out

# -------------------------------------------------
# 5. UI
# -------------------------------------------------
with gr.Blocks(title="Square Theory โ€“ Topย 10 ๐Ÿ‡ฐ๐Ÿ‡ท") as demo:
    gr.Markdown("""# ๐Ÿ”Ÿ Square Theory ์ œ์•ˆ Topย 10\n๋‹จ์–ด 1๊ฐœ โ†’ LLM์ด ํ‰๊ฐ€ยท์ •๋ ฌํ•œ 10๊ฐœ ์‚ฌ๊ฐํ˜•/์นดํ”ผ/๋ธŒ๋žœ๋“œ ๋„ค์ž„""")
    seed = gr.Textbox(label="์‹œ๋“œ ๋‹จ์–ด(TL)", placeholder="์˜ˆ: ๊ณจ๋“ ")
    run = gr.Button("์ƒ์„ฑ")
    fig_out = gr.Plot(label="1์œ„ ์‚ฌ๊ฐํ˜•")
    md_out = gr.Markdown(label="Topย 10 ์ œ์•ˆ")

    run.click(generate, inputs=seed, outputs=[fig_out, md_out])

if __name__ == "__main__":
    demo.launch()