Spaces:
Running
Running
#!/usr/bin/env python | |
import os | |
import re | |
import tempfile | |
from collections.abc import Iterator | |
from threading import Thread | |
import json | |
import requests | |
import cv2 | |
import gradio as gr | |
import spaces | |
import torch | |
from loguru import logger | |
from PIL import Image | |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer | |
# CSV/TXT 분석 | |
import pandas as pd | |
# PDF 텍스트 추출 | |
import PyPDF2 | |
############################################################################## | |
# SERPHouse API key from environment variable | |
############################################################################## | |
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "") | |
############################################################################## | |
# 간단한 키워드 추출 함수 (한글 + 알파벳 + 숫자 + 공백 보존) | |
############################################################################## | |
def extract_keywords(text: str, top_k: int = 5) -> str: | |
""" | |
1) 한글(가-힣), 영어(a-zA-Z), 숫자(0-9), 공백만 남김 | |
2) 공백 기준 토큰 분리 | |
3) 최대 top_k개만 | |
""" | |
text = re.sub(r"[^a-zA-Z0-9가-힣\s]", "", text) | |
tokens = text.split() | |
key_tokens = tokens[:top_k] | |
return " ".join(key_tokens) | |
############################################################################## | |
# SERPHouse Live endpoint 호출 | |
# - 상위 20개 결과 JSON을 LLM에 넘길 때 link, snippet 등 모두 포함 | |
############################################################################## | |
def do_web_search(query: str) -> str: | |
""" | |
상위 20개 'organic' 결과 item 전체(제목, link, snippet 등)를 | |
JSON 문자열 형태로 반환 | |
""" | |
try: | |
url = "https://api.serphouse.com/serp/live" | |
params = { | |
"q": query, | |
"domain": "google.com", | |
"lang": "en", | |
"device": "desktop", | |
"serp_type": "web", | |
"num_result": "20", | |
"api_token": SERPHOUSE_API_KEY, | |
} | |
resp = requests.get(url, params=params, timeout=30) | |
resp.raise_for_status() | |
data = resp.json() | |
results = data.get("results", {}) | |
organic = results.get("results", {}).get("organic", []) | |
if not organic: | |
return "No web search results found." | |
summary_lines = [] | |
for idx, item in enumerate(organic[:20], start=1): | |
item_json = json.dumps(item, ensure_ascii=False, indent=2) | |
summary_lines.append(f"Result {idx}:\n{item_json}\n") | |
return "\n".join(summary_lines) | |
except Exception as e: | |
logger.error(f"Web search failed: {e}") | |
return f"Web search failed: {str(e)}" | |
############################################################################## | |
# 모델/프로세서 로딩 | |
############################################################################## | |
MAX_CONTENT_CHARS = 4000 | |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it") | |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left") | |
model = Gemma3ForConditionalGeneration.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="eager" | |
) | |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5")) | |
############################################################################## | |
# CSV, TXT, PDF 분석 함수 | |
############################################################################## | |
def analyze_csv_file(path: str) -> str: | |
""" | |
CSV 파일을 전체 문자열로 변환. 너무 길 경우 일부만 표시. | |
""" | |
try: | |
df = pd.read_csv(path) | |
if df.shape[0] > 50 or df.shape[1] > 10: | |
df = df.iloc[:50, :10] | |
df_str = df.to_string() | |
if len(df_str) > MAX_CONTENT_CHARS: | |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}" | |
except Exception as e: | |
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}" | |
def analyze_txt_file(path: str) -> str: | |
""" | |
TXT 파일 전문 읽기. 너무 길면 일부만 표시. | |
""" | |
try: | |
with open(path, "r", encoding="utf-8") as f: | |
text = f.read() | |
if len(text) > MAX_CONTENT_CHARS: | |
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}" | |
except Exception as e: | |
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}" | |
def pdf_to_markdown(pdf_path: str) -> str: | |
""" | |
PDF → Markdown. 페이지별로 간단히 텍스트 추출. | |
""" | |
text_chunks = [] | |
try: | |
with open(pdf_path, "rb") as f: | |
reader = PyPDF2.PdfReader(f) | |
max_pages = min(5, len(reader.pages)) | |
for page_num in range(max_pages): | |
page = reader.pages[page_num] | |
page_text = page.extract_text() or "" | |
page_text = page_text.strip() | |
if page_text: | |
if len(page_text) > MAX_CONTENT_CHARS // max_pages: | |
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)" | |
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n") | |
if len(reader.pages) > max_pages: | |
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...") | |
except Exception as e: | |
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}" | |
full_text = "\n".join(text_chunks) | |
if len(full_text) > MAX_CONTENT_CHARS: | |
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}" | |
############################################################################## | |
# 이미지/비디오 업로드 제한 검사 | |
############################################################################## | |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for path in paths: | |
if path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def count_files_in_history(history: list[dict]) -> tuple[int, int]: | |
image_count = 0 | |
video_count = 0 | |
for item in history: | |
if item["role"] != "user" or isinstance(item["content"], str): | |
continue | |
if isinstance(item["content"], list) and len(item["content"]) > 0: | |
file_path = item["content"][0] | |
if isinstance(file_path, str): | |
if file_path.endswith(".mp4"): | |
video_count += 1 | |
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE): | |
image_count += 1 | |
return image_count, video_count | |
def validate_media_constraints(message: dict, history: list[dict]) -> bool: | |
media_files = [] | |
for f in message["files"]: | |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"): | |
media_files.append(f) | |
new_image_count, new_video_count = count_files_in_new_message(media_files) | |
history_image_count, history_video_count = count_files_in_history(history) | |
image_count = history_image_count + new_image_count | |
video_count = history_video_count + new_video_count | |
if video_count > 1: | |
gr.Warning("Only one video is supported.") | |
return False | |
if video_count == 1: | |
if image_count > 0: | |
gr.Warning("Mixing images and videos is not allowed.") | |
return False | |
if "<image>" in message["text"]: | |
gr.Warning("Using <image> tags with video files is not supported.") | |
return False | |
if video_count == 0 and image_count > MAX_NUM_IMAGES: | |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.") | |
return False | |
if "<image>" in message["text"]: | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
image_tag_count = message["text"].count("<image>") | |
if image_tag_count != len(image_files): | |
gr.Warning("The number of <image> tags in the text does not match the number of image files.") | |
return False | |
return True | |
############################################################################## | |
# 비디오 처리 | |
############################################################################## | |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]: | |
vidcap = cv2.VideoCapture(video_path) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
frame_interval = max(int(fps), int(total_frames / 10)) | |
frames = [] | |
for i in range(0, total_frames, frame_interval): | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
if len(frames) >= 5: | |
break | |
vidcap.release() | |
return frames | |
def process_video(video_path: str) -> list[dict]: | |
content = [] | |
frames = downsample_video(video_path) | |
for frame in frames: | |
pil_image, timestamp = frame | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
pil_image.save(temp_file.name) | |
content.append({"type": "text", "text": f"Frame {timestamp}:"}) | |
content.append({"type": "image", "url": temp_file.name}) | |
logger.debug(f"{content=}") | |
return content | |
############################################################################## | |
# interleaved <image> 처리 | |
############################################################################## | |
def process_interleaved_images(message: dict) -> list[dict]: | |
parts = re.split(r"(<image>)", message["text"]) | |
content = [] | |
image_index = 0 | |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)] | |
for part in parts: | |
if part == "<image>" and image_index < len(image_files): | |
content.append({"type": "image", "url": image_files[image_index]}) | |
image_index += 1 | |
elif part.strip(): | |
content.append({"type": "text", "text": part.strip()}) | |
else: | |
if isinstance(part, str) and part != "<image>": | |
content.append({"type": "text", "text": part}) | |
return content | |
############################################################################## | |
# PDF + CSV + TXT + 이미지/비디오 | |
############################################################################## | |
def is_image_file(file_path: str) -> bool: | |
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE)) | |
def is_video_file(file_path: str) -> bool: | |
return file_path.endswith(".mp4") | |
def is_document_file(file_path: str) -> bool: | |
return ( | |
file_path.lower().endswith(".pdf") | |
or file_path.lower().endswith(".csv") | |
or file_path.lower().endswith(".txt") | |
) | |
def process_new_user_message(message: dict) -> list[dict]: | |
if not message["files"]: | |
return [{"type": "text", "text": message["text"]}] | |
video_files = [f for f in message["files"] if is_video_file(f)] | |
image_files = [f for f in message["files"] if is_image_file(f)] | |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")] | |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")] | |
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")] | |
content_list = [{"type": "text", "text": message["text"]}] | |
for csv_path in csv_files: | |
csv_analysis = analyze_csv_file(csv_path) | |
content_list.append({"type": "text", "text": csv_analysis}) | |
for txt_path in txt_files: | |
txt_analysis = analyze_txt_file(txt_path) | |
content_list.append({"type": "text", "text": txt_analysis}) | |
for pdf_path in pdf_files: | |
pdf_markdown = pdf_to_markdown(pdf_path) | |
content_list.append({"type": "text", "text": pdf_markdown}) | |
if video_files: | |
content_list += process_video(video_files[0]) | |
return content_list | |
if "<image>" in message["text"] and image_files: | |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files}) | |
if content_list and content_list[0]["type"] == "text": | |
content_list = content_list[1:] | |
return interleaved_content + content_list | |
else: | |
for img_path in image_files: | |
content_list.append({"type": "image", "url": img_path}) | |
return content_list | |
############################################################################## | |
# history -> LLM 메시지 변환 | |
############################################################################## | |
def process_history(history: list[dict]) -> list[dict]: | |
messages = [] | |
current_user_content: list[dict] = [] | |
for item in history: | |
if item["role"] == "assistant": | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
current_user_content = [] | |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]}) | |
else: | |
content = item["content"] | |
if isinstance(content, str): | |
current_user_content.append({"type": "text", "text": content}) | |
elif isinstance(content, list) and len(content) > 0: | |
file_path = content[0] | |
if is_image_file(file_path): | |
current_user_content.append({"type": "image", "url": file_path}) | |
else: | |
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"}) | |
if current_user_content: | |
messages.append({"role": "user", "content": current_user_content}) | |
return messages | |
############################################################################## | |
# 메인 추론 함수 (web search 체크 시 자동 키워드추출->검색->결과 system msg) | |
############################################################################## | |
def run( | |
message: dict, | |
history: list[dict], | |
system_prompt: str = "", | |
max_new_tokens: int = 512, | |
use_web_search: bool = False, | |
web_search_query: str = "", | |
) -> Iterator[str]: | |
if not validate_media_constraints(message, history): | |
yield "" | |
return | |
try: | |
combined_system_msg = "" | |
if system_prompt.strip(): | |
combined_system_msg += f"[System Prompt]\n{system_prompt.strip()}\n\n" | |
if use_web_search: | |
user_text = message["text"] | |
ws_query = extract_keywords(user_text, top_k=5) | |
if ws_query.strip(): | |
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}") | |
ws_result = do_web_search(ws_query) | |
combined_system_msg += f"[Search top-20 Full Items Based on user prompt]\n{ws_result}\n\n" | |
else: | |
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n" | |
messages = [] | |
if combined_system_msg.strip(): | |
messages.append({ | |
"role": "system", | |
"content": [{"type": "text", "text": combined_system_msg.strip()}], | |
}) | |
messages.extend(process_history(history)) | |
user_content = process_new_user_message(message) | |
for item in user_content: | |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS: | |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..." | |
messages.append({"role": "user", "content": user_content}) | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(device=model.device, dtype=torch.bfloat16) | |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True) | |
gen_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
) | |
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs) | |
t.start() | |
output = "" | |
for new_text in streamer: | |
output += new_text | |
yield output | |
except Exception as e: | |
logger.error(f"Error in run: {str(e)}") | |
yield f"죄송합니다. 오류가 발생했습니다: {str(e)}" | |
############################################################################## | |
# [추가] 별도 함수에서 model.generate(...)를 호출, OOM 캐치 | |
############################################################################## | |
def _model_gen_with_oom_catch(**kwargs): | |
""" | |
별도 스레드에서 OutOfMemoryError를 잡아주기 위해 | |
""" | |
try: | |
model.generate(**kwargs) | |
except torch.cuda.OutOfMemoryError: | |
raise RuntimeError( | |
"[OutOfMemoryError] GPU 메모리가 부족합니다. " | |
"Max New Tokens을 줄이거나, 프롬프트 길이를 줄여주세요." | |
) | |
############################################################################## | |
# 예시들 (한글화) | |
############################################################################## | |
examples = [ | |
[ | |
{ | |
"text": "두 PDF 파일 내용을 비교하라.", | |
"files": ["assets/additional-examples/pdf.pdf"], | |
"files": [ | |
"assets/additional-examples/before.pdf", | |
"assets/additional-examples/after.pdf", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "CSV 파일 내용을 요약, 분석하라", | |
"files": ["assets/additional-examples/sample-csv.csv"], | |
} | |
], | |
[ | |
{ | |
"text": "이 영상의 내용을 설명하라", | |
"files": ["assets/additional-examples/tmp.mp4"], | |
} | |
], | |
[ | |
{ | |
"text": "표지 내용을 설명하고 글자를 읽어주세요.", | |
"files": ["assets/additional-examples/maz.jpg"], | |
} | |
], | |
[ | |
{ | |
"text": "이미 이 영양제를 <image> 가지고 있고, 이 제품 <image>을 새로 사려 합니다. 함께 섭취할 때 주의해야 할 점이 있을까요?", | |
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "이 적분을 풀어주세요.", | |
"files": ["assets/additional-examples/4.png"], | |
} | |
], | |
[ | |
{ | |
"text": "이 티켓은 언제 발급된 것이고, 가격은 얼마인가요?", | |
"files": ["assets/additional-examples/2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "이미지들의 순서를 바탕으로 짧은 이야기를 만들어 주세요.", | |
"files": [ | |
"assets/sample-images/09-1.png", | |
"assets/sample-images/09-2.png", | |
"assets/sample-images/09-3.png", | |
"assets/sample-images/09-4.png", | |
"assets/sample-images/09-5.png", | |
], | |
} | |
], | |
[ | |
{ | |
"text": "이미지의 시각적 요소에서 영감을 받아 시를 작성해주세요.", | |
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"], | |
} | |
], | |
[ | |
{ | |
"text": "동일한 막대 그래프를 그리는 matplotlib 코드를 작성해주세요.", | |
"files": ["assets/additional-examples/barchart.png"], | |
} | |
], | |
[ | |
{ | |
"text": "이 세계에서 살고 있을 생물들을 상상해서 묘사해주세요.", | |
"files": ["assets/sample-images/08.png"], | |
} | |
], | |
[ | |
{ | |
"text": "이미지에 있는 텍스트를 그대로 읽어서 마크다운 형태로 적어주세요.", | |
"files": ["assets/additional-examples/3.png"], | |
} | |
], | |
[ | |
{ | |
"text": "이 표지판에는 무슨 문구가 적혀 있나요?", | |
"files": ["assets/sample-images/02.png"], | |
} | |
], | |
[ | |
{ | |
"text": "두 이미지를 비교해서 공통점과 차이점을 말해주세요.", | |
"files": ["assets/sample-images/03.png"], | |
} | |
], | |
] | |
############################################################################## | |
# Gradio UI (Blocks) 구성 | |
############################################################################## | |
css = """ | |
body { | |
background: linear-gradient(135deg, #667eea, #764ba2); | |
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif; | |
color: #333; | |
margin: 0; | |
padding: 0; | |
} | |
.gradio-container { | |
background: rgba(255, 255, 255, 0.95); | |
border-radius: 15px; | |
padding: 30px 40px; | |
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3); | |
margin: 40px auto; | |
max-width: 1200px; | |
} | |
.gradio-container h1 { | |
color: #333; | |
text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2); | |
} | |
.fillable { | |
width: 95% !important; | |
max-width: unset !important; | |
} | |
#examples_container { | |
margin: auto; | |
width: 90%; | |
} | |
#examples_row { | |
justify-content: center; | |
} | |
.sidebar { | |
background: rgba(255, 255, 255, 0.98); | |
border-radius: 10px; | |
padding: 20px; | |
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2); | |
} | |
button, .btn { | |
background: linear-gradient(90deg, #ff8a00, #e52e71); | |
border: none; | |
color: #fff; | |
padding: 12px 24px; | |
text-transform: uppercase; | |
font-weight: bold; | |
letter-spacing: 1px; | |
border-radius: 5px; | |
cursor: pointer; | |
transition: transform 0.2s ease-in-out; | |
} | |
button:hover, .btn:hover { | |
transform: scale(1.05); | |
} | |
""" | |
title_html = """ | |
<h1 align="center" style="margin-bottom: 0.2em;"> 🤗 Vidraft-G3-27B : Multimodal + VLM + Deep Research </h1> | |
<p align="center" style="font-size:1.1em; color:#555;"> | |
Multimodal Chat Interface + Optional Web Search | |
</p> | |
""" | |
with gr.Blocks(css=css, title="Vidraft-G3-27B") as demo: | |
gr.Markdown(title_html) | |
with gr.Row(): | |
# Left Sidebar | |
with gr.Column(scale=3, variant="panel"): | |
gr.Markdown("### Menu / Options") | |
with gr.Row(): | |
web_search_checkbox = gr.Checkbox( | |
label="Web Search", | |
value=False, | |
info="Check to enable a Deep Research(auto keywords) before the chat reply" | |
) | |
web_search_text = gr.Textbox( | |
lines=1, | |
label="(Unused) Web Search Query", | |
placeholder="No direct input needed" | |
) | |
gr.Markdown("---") | |
gr.Markdown("#### System Prompt") | |
system_prompt_box = gr.Textbox( | |
lines=3, | |
value=( | |
"You are a deeply thoughtful AI. Consider problems thoroughly and derive " | |
"correct solutions through systematic reasoning. Please answer in korean." | |
), | |
) | |
max_tokens_slider = gr.Slider( | |
label="Max New Tokens", | |
minimum=100, | |
maximum=8000, | |
step=50, | |
value=2000, # GPU 메모리 절약 위해 기본값 약간 축소 | |
) | |
gr.Markdown("<br><br>") | |
# Main ChatInterface | |
with gr.Column(scale=7): | |
chat = gr.ChatInterface( | |
fn=run, | |
type="messages", | |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]), | |
textbox=gr.MultimodalTextbox( | |
file_types=[ | |
".webp", ".png", ".jpg", ".jpeg", ".gif", | |
".mp4", ".csv", ".txt", ".pdf" | |
], | |
file_count="multiple", | |
autofocus=True | |
), | |
multimodal=True, | |
additional_inputs=[ | |
system_prompt_box, | |
max_tokens_slider, | |
web_search_checkbox, | |
web_search_text, | |
], | |
stop_btn=False, | |
title="Vidraft-G3-27B", | |
examples=examples, | |
run_examples_on_click=False, | |
cache_examples=False, | |
css_paths=None, | |
delete_cache=(1800, 1800), | |
) | |
with gr.Row(elem_id="examples_row"): | |
with gr.Column(scale=12, elem_id="examples_container"): | |
gr.Markdown("### Example Inputs (click to load)") | |
gr.Examples( | |
examples=examples, | |
inputs=[], | |
cache_examples=False | |
) | |
if __name__ == "__main__": | |
# share=True 시 HF Spaces에서 경고 발생 - 로컬에서만 동작 | |
# demo.launch(share=True) | |
demo.launch() | |