Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,118 +2,119 @@
|
|
2 |
|
3 |
import os
|
4 |
import re
|
5 |
-
import tempfile
|
6 |
-
import gc # garbage collector ์ถ๊ฐ
|
7 |
-
from collections.abc import Iterator
|
8 |
-
from threading import Thread
|
9 |
import json
|
10 |
import requests
|
11 |
-
import
|
|
|
|
|
12 |
import gradio as gr
|
13 |
-
import spaces
|
14 |
-
import torch
|
15 |
from loguru import logger
|
16 |
-
from PIL import Image
|
17 |
-
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
18 |
-
|
19 |
-
# CSV/TXT ๋ถ์
|
20 |
import pandas as pd
|
21 |
-
# PDF ํ
์คํธ ์ถ์ถ
|
22 |
import PyPDF2
|
23 |
|
24 |
##############################################################################
|
25 |
-
#
|
26 |
##############################################################################
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
##############################################################################
|
34 |
-
#
|
35 |
##############################################################################
|
36 |
-
|
|
|
37 |
|
38 |
##############################################################################
|
39 |
-
#
|
40 |
##############################################################################
|
41 |
def extract_keywords(text: str, top_k: int = 5) -> str:
|
42 |
"""
|
43 |
-
|
44 |
-
2) ๊ณต๋ฐฑ ๊ธฐ์ค ํ ํฐ ๋ถ๋ฆฌ
|
45 |
-
3) ์ต๋ top_k๊ฐ๋ง
|
46 |
"""
|
|
|
|
|
|
|
47 |
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text)
|
48 |
tokens = text.split()
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
return " ".join(key_tokens)
|
51 |
|
52 |
##############################################################################
|
53 |
-
#
|
54 |
-
# - ์์ 20๊ฐ ๊ฒฐ๊ณผ JSON์ LLM์ ๋๊ธธ ๋ link, snippet ๋ฑ ๋ชจ๋ ํฌํจ
|
55 |
##############################################################################
|
56 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
"""
|
58 |
-
|
59 |
-
JSON ๋ฌธ์์ด ํํ๋ก ๋ฐํ
|
60 |
"""
|
|
|
|
|
|
|
61 |
try:
|
62 |
url = "https://api.serphouse.com/serp/live"
|
63 |
|
64 |
-
# ๊ธฐ๋ณธ GET ๋ฐฉ์์ผ๋ก ํ๋ผ๋ฏธํฐ ๊ฐ์ํํ๊ณ ๊ฒฐ๊ณผ ์๋ฅผ 20๊ฐ๋ก ์ ํ
|
65 |
params = {
|
66 |
"q": query,
|
67 |
"domain": "google.com",
|
68 |
-
"serp_type": "web",
|
69 |
"device": "desktop",
|
70 |
-
"lang": "en",
|
71 |
-
"num": "20"
|
72 |
}
|
73 |
|
74 |
headers = {
|
75 |
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
|
76 |
}
|
77 |
|
78 |
-
logger.info(f"SerpHouse API
|
79 |
-
logger.info(f"์์ฒญ URL: {url} - ํ๋ผ๋ฏธํฐ: {params}")
|
80 |
|
81 |
-
|
82 |
-
response = requests.get(url, headers=headers, params=params, timeout=60)
|
83 |
response.raise_for_status()
|
84 |
|
85 |
-
logger.info(f"SerpHouse API ์๋ต ์ํ ์ฝ๋: {response.status_code}")
|
86 |
data = response.json()
|
87 |
|
88 |
-
#
|
89 |
results = data.get("results", {})
|
90 |
organic = None
|
91 |
|
92 |
-
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 1
|
93 |
if isinstance(results, dict) and "organic" in results:
|
94 |
organic = results["organic"]
|
95 |
-
|
96 |
-
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 2 (์ค์ฒฉ๋ results)
|
97 |
elif isinstance(results, dict) and "results" in results:
|
98 |
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
99 |
organic = results["results"]["organic"]
|
100 |
-
|
101 |
-
# ๊ฐ๋ฅํ ์๋ต ๊ตฌ์กฐ 3 (์ต์์ organic)
|
102 |
elif "organic" in data:
|
103 |
organic = data["organic"]
|
104 |
|
105 |
if not organic:
|
106 |
-
|
107 |
-
logger.debug(f"์๋ต ๊ตฌ์กฐ: {list(data.keys())}")
|
108 |
-
if isinstance(results, dict):
|
109 |
-
logger.debug(f"results ๊ตฌ์กฐ: {list(results.keys())}")
|
110 |
-
return "No web search results found or unexpected API response structure."
|
111 |
|
112 |
-
# ๊ฒฐ๊ณผ ์ ์ ํ ๋ฐ ์ปจํ
์คํธ ๊ธธ์ด ์ต์ ํ
|
113 |
max_results = min(20, len(organic))
|
114 |
limited_organic = organic[:max_results]
|
115 |
|
116 |
-
# ๊ฒฐ๊ณผ ํ์ ๊ฐ์ - ๋งํฌ๋ค์ด ํ์์ผ๋ก ์ถ๋ ฅํ์ฌ ๊ฐ๋
์ฑ ํฅ์
|
117 |
summary_lines = []
|
118 |
for idx, item in enumerate(limited_organic, start=1):
|
119 |
title = item.get("title", "No title")
|
@@ -121,104 +122,132 @@ def do_web_search(query: str) -> str:
|
|
121 |
snippet = item.get("snippet", "No description")
|
122 |
displayed_link = item.get("displayed_link", link)
|
123 |
|
124 |
-
# ๋งํฌ๋ค์ด ํ์ (๋งํฌ ํด๋ฆญ ๊ฐ๋ฅ)
|
125 |
summary_lines.append(
|
126 |
f"### Result {idx}: {title}\n\n"
|
127 |
f"{snippet}\n\n"
|
128 |
-
f"
|
129 |
f"---\n"
|
130 |
)
|
131 |
|
132 |
-
# ๋ชจ๋ธ์๊ฒ ๋ช
ํํ ์ง์นจ ์ถ๊ฐ
|
133 |
instructions = """
|
134 |
-
#
|
135 |
-
|
136 |
-
1.
|
137 |
-
2.
|
138 |
-
3.
|
139 |
-
4.
|
140 |
"""
|
141 |
|
142 |
search_results = instructions + "\n".join(summary_lines)
|
143 |
-
logger.info(f"๊ฒ์ ๊ฒฐ๊ณผ {len(limited_organic)}๊ฐ ์ฒ๋ฆฌ ์๋ฃ")
|
144 |
return search_results
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
except Exception as e:
|
147 |
logger.error(f"Web search failed: {e}")
|
148 |
return f"Web search failed: {str(e)}"
|
149 |
|
150 |
-
|
151 |
-
##############################################################################
|
152 |
-
# ๋ชจ๋ธ/ํ๋ก์ธ์ ๋ก๋ฉ
|
153 |
-
##############################################################################
|
154 |
-
MAX_CONTENT_CHARS = 2000
|
155 |
-
MAX_INPUT_LENGTH = 2096 # ์ต๋ ์
๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ
|
156 |
-
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-27B")
|
157 |
-
|
158 |
-
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
159 |
-
model = Gemma3ForConditionalGeneration.from_pretrained(
|
160 |
-
model_id,
|
161 |
-
device_map="auto",
|
162 |
-
torch_dtype=torch.bfloat16,
|
163 |
-
attn_implementation="eager" # ๊ฐ๋ฅํ๋ค๋ฉด "flash_attention_2"๋ก ๋ณ๊ฒฝ
|
164 |
-
)
|
165 |
-
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
166 |
-
|
167 |
-
|
168 |
##############################################################################
|
169 |
-
#
|
170 |
##############################################################################
|
171 |
def analyze_csv_file(path: str) -> str:
|
172 |
-
"""
|
173 |
-
|
174 |
-
|
|
|
175 |
try:
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
df_str = df.to_string()
|
180 |
if len(df_str) > MAX_CONTENT_CHARS:
|
181 |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
182 |
-
|
|
|
183 |
except Exception as e:
|
184 |
-
|
185 |
-
|
186 |
|
187 |
def analyze_txt_file(path: str) -> str:
|
188 |
-
"""
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
def pdf_to_markdown(pdf_path: str) -> str:
|
202 |
-
"""
|
203 |
-
|
204 |
-
|
|
|
205 |
text_chunks = []
|
206 |
try:
|
207 |
with open(pdf_path, "rb") as f:
|
208 |
reader = PyPDF2.PdfReader(f)
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
210 |
for page_num in range(max_pages):
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
220 |
except Exception as e:
|
221 |
-
|
|
|
222 |
|
223 |
full_text = "\n".join(text_chunks)
|
224 |
if len(full_text) > MAX_CONTENT_CHARS:
|
@@ -226,365 +255,256 @@ def pdf_to_markdown(pdf_path: str) -> str:
|
|
226 |
|
227 |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
228 |
|
229 |
-
|
230 |
##############################################################################
|
231 |
-
#
|
232 |
##############################################################################
|
233 |
-
def
|
234 |
-
|
235 |
-
|
236 |
-
for path in paths:
|
237 |
-
if path.endswith(".mp4"):
|
238 |
-
video_count += 1
|
239 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
|
240 |
-
image_count += 1
|
241 |
-
return image_count, video_count
|
242 |
-
|
243 |
-
|
244 |
-
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
245 |
-
image_count = 0
|
246 |
-
video_count = 0
|
247 |
-
for item in history:
|
248 |
-
if item["role"] != "user" or isinstance(item["content"], str):
|
249 |
-
continue
|
250 |
-
if isinstance(item["content"], list) and len(item["content"]) > 0:
|
251 |
-
file_path = item["content"][0]
|
252 |
-
if isinstance(file_path, str):
|
253 |
-
if file_path.endswith(".mp4"):
|
254 |
-
video_count += 1
|
255 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
|
256 |
-
image_count += 1
|
257 |
-
return image_count, video_count
|
258 |
-
|
259 |
-
|
260 |
-
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
261 |
-
media_files = []
|
262 |
-
for f in message["files"]:
|
263 |
-
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
264 |
-
media_files.append(f)
|
265 |
-
|
266 |
-
new_image_count, new_video_count = count_files_in_new_message(media_files)
|
267 |
-
history_image_count, history_video_count = count_files_in_history(history)
|
268 |
-
image_count = history_image_count + new_image_count
|
269 |
-
video_count = history_video_count + new_video_count
|
270 |
-
|
271 |
-
if video_count > 1:
|
272 |
-
gr.Warning("Only one video is supported.")
|
273 |
-
return False
|
274 |
-
if video_count == 1:
|
275 |
-
if image_count > 0:
|
276 |
-
gr.Warning("Mixing images and videos is not allowed.")
|
277 |
-
return False
|
278 |
-
if "<image>" in message["text"]:
|
279 |
-
gr.Warning("Using <image> tags with video files is not supported.")
|
280 |
-
return False
|
281 |
-
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
282 |
-
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
283 |
-
return False
|
284 |
-
|
285 |
-
if "<image>" in message["text"]:
|
286 |
-
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
287 |
-
image_tag_count = message["text"].count("<image>")
|
288 |
-
if image_tag_count != len(image_files):
|
289 |
-
gr.Warning("The number of <image> tags in the text does not match the number of image files.")
|
290 |
-
return False
|
291 |
-
|
292 |
-
return True
|
293 |
-
|
294 |
-
|
295 |
-
##############################################################################
|
296 |
-
# ๋น๋์ค ์ฒ๋ฆฌ - ์์ ํ์ผ ์ถ์ ์ฝ๋ ์ถ๊ฐ
|
297 |
-
##############################################################################
|
298 |
-
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
299 |
-
vidcap = cv2.VideoCapture(video_path)
|
300 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
301 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
302 |
-
frame_interval = max(int(fps), int(total_frames / 10))
|
303 |
-
frames = []
|
304 |
-
|
305 |
-
for i in range(0, total_frames, frame_interval):
|
306 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
307 |
-
success, image = vidcap.read()
|
308 |
-
if success:
|
309 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
310 |
-
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ค์ด๊ธฐ ์ถ๊ฐ
|
311 |
-
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
|
312 |
-
pil_image = Image.fromarray(image)
|
313 |
-
timestamp = round(i / fps, 2)
|
314 |
-
frames.append((pil_image, timestamp))
|
315 |
-
if len(frames) >= 5:
|
316 |
-
break
|
317 |
-
|
318 |
-
vidcap.release()
|
319 |
-
return frames
|
320 |
-
|
321 |
|
322 |
-
def
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
frames = downsample_video(video_path)
|
327 |
-
for frame in frames:
|
328 |
-
pil_image, timestamp = frame
|
329 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
330 |
-
pil_image.save(temp_file.name)
|
331 |
-
temp_files.append(temp_file.name) # ์ถ์ ์ ์ํด ๊ฒฝ๋ก ์ ์ฅ
|
332 |
-
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
333 |
-
content.append({"type": "image", "url": temp_file.name})
|
334 |
-
|
335 |
-
return content, temp_files
|
336 |
|
|
|
|
|
|
|
337 |
|
338 |
##############################################################################
|
339 |
-
#
|
340 |
##############################################################################
|
341 |
-
def
|
342 |
-
|
343 |
-
|
344 |
-
image_index = 0
|
345 |
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
348 |
-
for
|
349 |
-
if
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
354 |
else:
|
355 |
-
|
356 |
-
content.append({"type": "text", "text": part})
|
357 |
-
return content
|
358 |
-
|
359 |
-
|
360 |
-
##############################################################################
|
361 |
-
# PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค
|
362 |
-
##############################################################################
|
363 |
-
def is_image_file(file_path: str) -> bool:
|
364 |
-
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
365 |
-
|
366 |
-
def is_video_file(file_path: str) -> bool:
|
367 |
-
return file_path.endswith(".mp4")
|
368 |
-
|
369 |
-
def is_document_file(file_path: str) -> bool:
|
370 |
-
return (
|
371 |
-
file_path.lower().endswith(".pdf")
|
372 |
-
or file_path.lower().endswith(".csv")
|
373 |
-
or file_path.lower().endswith(".txt")
|
374 |
-
)
|
375 |
-
|
376 |
-
|
377 |
-
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
|
378 |
-
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ ๋ฆฌ์คํธ
|
379 |
|
380 |
-
|
381 |
-
return [{"type": "text", "text": message["text"]}], temp_files
|
382 |
-
|
383 |
-
video_files = [f for f in message["files"] if is_video_file(f)]
|
384 |
-
image_files = [f for f in message["files"] if is_image_file(f)]
|
385 |
-
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
386 |
-
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
387 |
-
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
388 |
-
|
389 |
-
content_list = [{"type": "text", "text": message["text"]}]
|
390 |
-
|
391 |
for csv_path in csv_files:
|
392 |
csv_analysis = analyze_csv_file(csv_path)
|
393 |
-
|
394 |
|
395 |
for txt_path in txt_files:
|
396 |
txt_analysis = analyze_txt_file(txt_path)
|
397 |
-
|
398 |
|
399 |
for pdf_path in pdf_files:
|
400 |
pdf_markdown = pdf_to_markdown(pdf_path)
|
401 |
-
|
402 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
if video_files:
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
return
|
419 |
-
|
420 |
|
421 |
-
##############################################################################
|
422 |
-
# history -> LLM ๋ฉ์์ง ๋ณํ
|
423 |
-
##############################################################################
|
424 |
def process_history(history: list[dict]) -> list[dict]:
|
|
|
425 |
messages = []
|
426 |
-
|
427 |
for item in history:
|
428 |
if item["role"] == "assistant":
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
else:
|
434 |
content = item["content"]
|
435 |
if isinstance(content, str):
|
436 |
-
|
|
|
|
|
|
|
437 |
elif isinstance(content, list) and len(content) > 0:
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
|
|
|
|
447 |
return messages
|
448 |
|
449 |
-
|
450 |
##############################################################################
|
451 |
-
#
|
452 |
##############################################################################
|
453 |
-
def
|
454 |
-
"""
|
455 |
-
|
456 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
try:
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
|
|
463 |
)
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
##############################################################################
|
470 |
-
#
|
471 |
##############################################################################
|
472 |
-
|
473 |
def run(
|
474 |
message: dict,
|
475 |
history: list[dict],
|
476 |
-
system_prompt: str = "",
|
477 |
max_new_tokens: int = 512,
|
478 |
use_web_search: bool = False,
|
479 |
-
|
|
|
480 |
) -> Iterator[str]:
|
481 |
-
|
482 |
-
if not validate_media_constraints(message, history):
|
483 |
-
yield ""
|
484 |
-
return
|
485 |
-
|
486 |
-
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ
|
487 |
|
488 |
try:
|
489 |
-
|
490 |
-
|
491 |
-
|
|
|
|
|
|
|
|
|
|
|
492 |
if system_prompt.strip():
|
493 |
-
combined_system_msg += f"
|
494 |
-
|
|
|
495 |
if use_web_search:
|
496 |
-
user_text = message
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
[
|
506 |
-
|
507 |
-
|
508 |
-
3. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์.
|
509 |
-
4. ๋ต๋ณ ๋ง์ง๋ง์ "์ฐธ๊ณ ์๋ฃ:" ์น์
์ ์ถ๊ฐํ๊ณ ์ฌ์ฉํ ์ฃผ์ ์ถ์ฒ ๋งํฌ๋ฅผ ๋์ดํ์ธ์.
|
510 |
-
"""
|
511 |
-
else:
|
512 |
-
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
|
513 |
-
|
514 |
-
messages = []
|
515 |
-
if combined_system_msg.strip():
|
516 |
-
messages.append({
|
517 |
-
"role": "system",
|
518 |
-
"content": [{"type": "text", "text": combined_system_msg.strip()}],
|
519 |
-
})
|
520 |
-
|
521 |
-
messages.extend(process_history(history))
|
522 |
-
|
523 |
-
user_content, user_temp_files = process_new_user_message(message)
|
524 |
-
temp_files.extend(user_temp_files) # ์์ ํ์ผ ์ถ์
|
525 |
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
inputs = processor.apply_chat_template(
|
532 |
-
messages,
|
533 |
-
add_generation_prompt=True,
|
534 |
-
tokenize=True,
|
535 |
-
return_dict=True,
|
536 |
-
return_tensors="pt",
|
537 |
-
).to(device=model.device, dtype=torch.bfloat16)
|
538 |
|
539 |
-
#
|
540 |
-
|
541 |
-
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
|
542 |
-
if 'attention_mask' in inputs:
|
543 |
-
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
|
544 |
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
)
|
551 |
-
|
552 |
-
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
|
553 |
-
t.start()
|
554 |
-
|
555 |
-
output = ""
|
556 |
-
for new_text in streamer:
|
557 |
-
output += new_text
|
558 |
-
yield output
|
559 |
-
|
560 |
-
except Exception as e:
|
561 |
-
logger.error(f"Error in run: {str(e)}")
|
562 |
-
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
563 |
-
|
564 |
-
finally:
|
565 |
-
# ์์ ํ์ผ ์ญ์
|
566 |
-
for temp_file in temp_files:
|
567 |
-
try:
|
568 |
-
if os.path.exists(temp_file):
|
569 |
-
os.unlink(temp_file)
|
570 |
-
logger.info(f"Deleted temp file: {temp_file}")
|
571 |
-
except Exception as e:
|
572 |
-
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
|
573 |
|
574 |
-
#
|
575 |
-
|
576 |
-
del inputs, streamer
|
577 |
-
except:
|
578 |
-
pass
|
579 |
|
580 |
-
|
581 |
-
|
582 |
-
|
|
|
|
|
|
|
|
|
583 |
|
584 |
##############################################################################
|
585 |
-
#
|
586 |
##############################################################################
|
587 |
examples = [
|
|
|
588 |
[
|
589 |
{
|
590 |
"text": "Compare the contents of the two PDF files.",
|
@@ -594,256 +514,253 @@ examples = [
|
|
594 |
],
|
595 |
}
|
596 |
],
|
|
|
597 |
[
|
598 |
{
|
599 |
"text": "Summarize and analyze the contents of the CSV file.",
|
600 |
"files": ["assets/additional-examples/sample-csv.csv"],
|
601 |
}
|
602 |
],
|
|
|
603 |
[
|
604 |
{
|
605 |
-
"text": "
|
606 |
-
"files": [
|
607 |
-
}
|
608 |
-
],
|
609 |
-
[
|
610 |
-
{
|
611 |
-
"text": "Describe the cover and read the text on it.",
|
612 |
-
"files": ["assets/additional-examples/maz.jpg"],
|
613 |
-
}
|
614 |
-
],
|
615 |
-
[
|
616 |
-
{
|
617 |
-
"text": "I already have this supplement <image> and I plan to buy this product <image>. Are there any precautions when taking them together?",
|
618 |
-
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
|
619 |
}
|
620 |
],
|
|
|
621 |
[
|
622 |
{
|
623 |
-
"text": "
|
624 |
-
"files": [
|
625 |
}
|
626 |
],
|
627 |
-
[
|
628 |
-
{
|
629 |
-
"text": "When was this ticket issued, and what is its price?",
|
630 |
-
"files": ["assets/additional-examples/2.png"],
|
631 |
-
}
|
632 |
-
],
|
633 |
-
[
|
634 |
-
{
|
635 |
-
"text": "Based on the sequence of these images, create a short story.",
|
636 |
-
"files": [
|
637 |
-
"assets/sample-images/09-1.png",
|
638 |
-
"assets/sample-images/09-2.png",
|
639 |
-
"assets/sample-images/09-3.png",
|
640 |
-
"assets/sample-images/09-4.png",
|
641 |
-
"assets/sample-images/09-5.png",
|
642 |
-
],
|
643 |
-
}
|
644 |
-
],
|
645 |
-
[
|
646 |
-
{
|
647 |
-
"text": "Write Python code using matplotlib to plot a bar chart that matches this image.",
|
648 |
-
"files": ["assets/additional-examples/barchart.png"],
|
649 |
-
}
|
650 |
-
],
|
651 |
-
[
|
652 |
-
{
|
653 |
-
"text": "Read the text in the image and write it out in Markdown format.",
|
654 |
-
"files": ["assets/additional-examples/3.png"],
|
655 |
-
}
|
656 |
-
],
|
657 |
-
[
|
658 |
-
{
|
659 |
-
"text": "What does this sign say?",
|
660 |
-
"files": ["assets/sample-images/02.png"],
|
661 |
-
}
|
662 |
-
],
|
663 |
-
[
|
664 |
-
{
|
665 |
-
"text": "Compare the two images and describe their similarities and differences.",
|
666 |
-
"files": ["assets/sample-images/03.png"],
|
667 |
-
}
|
668 |
-
],
|
669 |
]
|
670 |
|
671 |
##############################################################################
|
672 |
-
# Gradio UI
|
673 |
##############################################################################
|
674 |
css = """
|
675 |
-
/*
|
676 |
.gradio-container {
|
677 |
-
background: rgba(255, 255, 255, 0.
|
678 |
padding: 30px 40px;
|
679 |
-
margin: 20px auto;
|
680 |
width: 100% !important;
|
681 |
-
max-width: none !important;
|
|
|
|
|
682 |
}
|
|
|
683 |
.fillable {
|
684 |
width: 100% !important;
|
685 |
max-width: 100% !important;
|
686 |
}
|
687 |
-
|
|
|
688 |
body {
|
689 |
-
background:
|
690 |
margin: 0;
|
691 |
padding: 0;
|
692 |
-
font-family: '
|
693 |
color: #333;
|
694 |
}
|
695 |
-
|
|
|
696 |
button, .btn {
|
697 |
-
background:
|
698 |
-
border:
|
699 |
-
color:
|
700 |
-
padding:
|
701 |
text-transform: uppercase;
|
702 |
-
font-weight:
|
703 |
-
letter-spacing:
|
704 |
cursor: pointer;
|
|
|
|
|
705 |
}
|
|
|
706 |
button:hover, .btn:hover {
|
707 |
-
background:
|
|
|
|
|
708 |
}
|
709 |
|
710 |
-
/*
|
711 |
#examples_container, .examples-container {
|
712 |
-
margin: auto;
|
713 |
width: 90%;
|
714 |
-
background:
|
|
|
|
|
715 |
}
|
|
|
716 |
#examples_row, .examples-row {
|
717 |
justify-content: center;
|
718 |
-
background: transparent !important;
|
719 |
}
|
720 |
|
721 |
-
/*
|
722 |
.gr-samples-table button,
|
723 |
-
.gr-samples-table .gr-button,
|
724 |
-
.gr-samples-table .gr-sample-btn,
|
725 |
.gr-examples button,
|
726 |
-
.
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
border: 1px solid #ddd;
|
733 |
-
color: #333;
|
734 |
}
|
735 |
|
736 |
-
/* examples ๋ฒํผ ํธ๋ฒ ์์๋ ์์ ์๊ฒ */
|
737 |
.gr-samples-table button:hover,
|
738 |
-
.gr-samples-table .gr-button:hover,
|
739 |
-
.gr-samples-table .gr-sample-btn:hover,
|
740 |
.gr-examples button:hover,
|
741 |
-
.
|
742 |
-
|
743 |
-
|
744 |
-
.examples .gr-button:hover,
|
745 |
-
.examples .gr-sample-btn:hover {
|
746 |
-
background: rgba(0, 0, 0, 0.05) !important;
|
747 |
}
|
748 |
|
749 |
-
/*
|
750 |
-
.chatbox, .chatbot
|
751 |
-
background:
|
|
|
|
|
752 |
}
|
753 |
|
754 |
-
|
755 |
-
|
756 |
-
|
|
|
757 |
}
|
758 |
|
759 |
-
/*
|
760 |
-
.
|
761 |
-
background:
|
|
|
|
|
|
|
|
|
762 |
}
|
763 |
|
764 |
-
|
765 |
-
|
766 |
-
|
|
|
767 |
}
|
768 |
-
"""
|
769 |
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
|
|
778 |
|
|
|
|
|
|
|
|
|
779 |
|
780 |
-
|
781 |
-
|
|
|
|
|
|
|
782 |
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
)
|
788 |
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
804 |
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
811 |
|
812 |
-
#
|
813 |
chat = gr.ChatInterface(
|
814 |
fn=run,
|
815 |
type="messages",
|
816 |
-
chatbot=gr.Chatbot(type="messages", scale=1
|
817 |
textbox=gr.MultimodalTextbox(
|
818 |
file_types=[
|
819 |
".webp", ".png", ".jpg", ".jpeg", ".gif",
|
820 |
".mp4", ".csv", ".txt", ".pdf"
|
821 |
],
|
822 |
file_count="multiple",
|
823 |
-
autofocus=True
|
|
|
824 |
),
|
825 |
multimodal=True,
|
826 |
additional_inputs=[
|
827 |
-
system_prompt_box,
|
828 |
max_tokens_slider,
|
829 |
web_search_checkbox,
|
830 |
-
|
831 |
],
|
832 |
stop_btn=False,
|
833 |
-
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
|
834 |
examples=examples,
|
835 |
run_examples_on_click=False,
|
836 |
cache_examples=False,
|
837 |
-
css_paths=None,
|
838 |
delete_cache=(1800, 1800),
|
839 |
)
|
840 |
|
841 |
-
# Example section - since examples are already set in ChatInterface, this is for display only
|
842 |
-
with gr.Row(elem_id="examples_row"):
|
843 |
-
with gr.Column(scale=12, elem_id="examples_container"):
|
844 |
-
gr.Markdown("### Example Inputs (click to load)")
|
845 |
-
|
846 |
-
|
847 |
if __name__ == "__main__":
|
848 |
-
|
849 |
-
demo.launch()
|
|
|
2 |
|
3 |
import os
|
4 |
import re
|
|
|
|
|
|
|
|
|
5 |
import json
|
6 |
import requests
|
7 |
+
from collections.abc import Iterator
|
8 |
+
from threading import Thread
|
9 |
+
|
10 |
import gradio as gr
|
|
|
|
|
11 |
from loguru import logger
|
|
|
|
|
|
|
|
|
12 |
import pandas as pd
|
|
|
13 |
import PyPDF2
|
14 |
|
15 |
##############################################################################
|
16 |
+
# API Configuration
|
17 |
##############################################################################
|
18 |
+
FRIENDLI_TOKEN = os.environ.get("FRIENDLI_TOKEN")
|
19 |
+
if not FRIENDLI_TOKEN:
|
20 |
+
raise ValueError("Please set FRIENDLI_TOKEN environment variable")
|
21 |
+
|
22 |
+
FRIENDLI_MODEL_ID = "dep89a2fld32mcm"
|
23 |
+
FRIENDLI_API_URL = "https://api.friendli.ai/dedicated/v1/chat/completions"
|
24 |
+
|
25 |
+
# SERPHouse API key
|
26 |
+
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
|
27 |
+
if not SERPHOUSE_API_KEY:
|
28 |
+
logger.warning("SERPHOUSE_API_KEY not set. Web search functionality will be limited.")
|
29 |
|
30 |
##############################################################################
|
31 |
+
# File Processing Constants
|
32 |
##############################################################################
|
33 |
+
MAX_FILE_SIZE = 10 * 1024 * 1024 # 10MB
|
34 |
+
MAX_CONTENT_CHARS = 2000
|
35 |
|
36 |
##############################################################################
|
37 |
+
# Improved Keyword Extraction
|
38 |
##############################################################################
|
39 |
def extract_keywords(text: str, top_k: int = 5) -> str:
|
40 |
"""
|
41 |
+
Extract keywords: supports English and Korean
|
|
|
|
|
42 |
"""
|
43 |
+
stop_words = {'์', '๋', '์ด', '๊ฐ', '์', '๋ฅผ', '์', '์', '์์',
|
44 |
+
'the', 'is', 'at', 'on', 'in', 'a', 'an', 'and', 'or', 'but'}
|
45 |
+
|
46 |
text = re.sub(r"[^a-zA-Z0-9๊ฐ-ํฃ\s]", "", text)
|
47 |
tokens = text.split()
|
48 |
+
|
49 |
+
key_tokens = [
|
50 |
+
token for token in tokens
|
51 |
+
if token.lower() not in stop_words and len(token) > 1
|
52 |
+
][:top_k]
|
53 |
+
|
54 |
return " ".join(key_tokens)
|
55 |
|
56 |
##############################################################################
|
57 |
+
# File Size Validation
|
|
|
58 |
##############################################################################
|
59 |
+
def validate_file_size(file_path: str) -> bool:
|
60 |
+
"""Check if file size is within limits"""
|
61 |
+
try:
|
62 |
+
file_size = os.path.getsize(file_path)
|
63 |
+
return file_size <= MAX_FILE_SIZE
|
64 |
+
except:
|
65 |
+
return False
|
66 |
+
|
67 |
+
##############################################################################
|
68 |
+
# Web Search Function
|
69 |
+
##############################################################################
|
70 |
+
def do_web_search(query: str, use_korean: bool = False) -> str:
|
71 |
"""
|
72 |
+
Search web and return top 20 organic results
|
|
|
73 |
"""
|
74 |
+
if not SERPHOUSE_API_KEY:
|
75 |
+
return "Web search unavailable. API key not configured."
|
76 |
+
|
77 |
try:
|
78 |
url = "https://api.serphouse.com/serp/live"
|
79 |
|
|
|
80 |
params = {
|
81 |
"q": query,
|
82 |
"domain": "google.com",
|
83 |
+
"serp_type": "web",
|
84 |
"device": "desktop",
|
85 |
+
"lang": "ko" if use_korean else "en",
|
86 |
+
"num": "20"
|
87 |
}
|
88 |
|
89 |
headers = {
|
90 |
"Authorization": f"Bearer {SERPHOUSE_API_KEY}"
|
91 |
}
|
92 |
|
93 |
+
logger.info(f"Calling SerpHouse API... Query: {query}")
|
|
|
94 |
|
95 |
+
response = requests.get(url, headers=headers, params=params, timeout=30)
|
|
|
96 |
response.raise_for_status()
|
97 |
|
|
|
98 |
data = response.json()
|
99 |
|
100 |
+
# Parse results
|
101 |
results = data.get("results", {})
|
102 |
organic = None
|
103 |
|
|
|
104 |
if isinstance(results, dict) and "organic" in results:
|
105 |
organic = results["organic"]
|
|
|
|
|
106 |
elif isinstance(results, dict) and "results" in results:
|
107 |
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
108 |
organic = results["results"]["organic"]
|
|
|
|
|
109 |
elif "organic" in data:
|
110 |
organic = data["organic"]
|
111 |
|
112 |
if not organic:
|
113 |
+
return "No search results found or unexpected API response structure."
|
|
|
|
|
|
|
|
|
114 |
|
|
|
115 |
max_results = min(20, len(organic))
|
116 |
limited_organic = organic[:max_results]
|
117 |
|
|
|
118 |
summary_lines = []
|
119 |
for idx, item in enumerate(limited_organic, start=1):
|
120 |
title = item.get("title", "No title")
|
|
|
122 |
snippet = item.get("snippet", "No description")
|
123 |
displayed_link = item.get("displayed_link", link)
|
124 |
|
|
|
125 |
summary_lines.append(
|
126 |
f"### Result {idx}: {title}\n\n"
|
127 |
f"{snippet}\n\n"
|
128 |
+
f"**Source**: [{displayed_link}]({link})\n\n"
|
129 |
f"---\n"
|
130 |
)
|
131 |
|
|
|
132 |
instructions = """
|
133 |
+
# Web Search Results
|
134 |
+
Below are the search results. Use this information when answering questions:
|
135 |
+
1. Reference the title, content, and source links
|
136 |
+
2. Explicitly cite sources in your answer (e.g., "According to source X...")
|
137 |
+
3. Include actual source links in your response
|
138 |
+
4. Synthesize information from multiple sources
|
139 |
"""
|
140 |
|
141 |
search_results = instructions + "\n".join(summary_lines)
|
|
|
142 |
return search_results
|
143 |
|
144 |
+
except requests.exceptions.Timeout:
|
145 |
+
logger.error("Web search timeout")
|
146 |
+
return "Web search timed out. Please try again."
|
147 |
+
except requests.exceptions.RequestException as e:
|
148 |
+
logger.error(f"Web search network error: {e}")
|
149 |
+
return "Network error during web search."
|
150 |
except Exception as e:
|
151 |
logger.error(f"Web search failed: {e}")
|
152 |
return f"Web search failed: {str(e)}"
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
##############################################################################
|
155 |
+
# File Analysis Functions
|
156 |
##############################################################################
|
157 |
def analyze_csv_file(path: str) -> str:
|
158 |
+
"""Analyze CSV file with size validation and encoding handling"""
|
159 |
+
if not validate_file_size(path):
|
160 |
+
return f"โ ๏ธ Error: File size exceeds {MAX_FILE_SIZE/1024/1024:.1f}MB limit."
|
161 |
+
|
162 |
try:
|
163 |
+
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin-1']
|
164 |
+
df = None
|
165 |
+
|
166 |
+
for encoding in encodings:
|
167 |
+
try:
|
168 |
+
df = pd.read_csv(path, encoding=encoding, nrows=50)
|
169 |
+
break
|
170 |
+
except UnicodeDecodeError:
|
171 |
+
continue
|
172 |
+
|
173 |
+
if df is None:
|
174 |
+
return f"Failed to read CSV: Unsupported encoding"
|
175 |
+
|
176 |
+
total_rows = len(pd.read_csv(path, encoding=encoding, usecols=[0]))
|
177 |
+
|
178 |
+
if df.shape[1] > 10:
|
179 |
+
df = df.iloc[:, :10]
|
180 |
+
|
181 |
+
summary = f"**Data size**: {total_rows} rows x {df.shape[1]} columns\n"
|
182 |
+
summary += f"**Showing**: Top {min(50, total_rows)} rows\n"
|
183 |
+
summary += f"**Columns**: {', '.join(df.columns)}\n\n"
|
184 |
+
|
185 |
df_str = df.to_string()
|
186 |
if len(df_str) > MAX_CONTENT_CHARS:
|
187 |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
188 |
+
|
189 |
+
return f"**[CSV File: {os.path.basename(path)}]**\n\n{summary}{df_str}"
|
190 |
except Exception as e:
|
191 |
+
logger.error(f"CSV read error: {e}")
|
192 |
+
return f"Failed to read CSV file ({os.path.basename(path)}): {str(e)}"
|
193 |
|
194 |
def analyze_txt_file(path: str) -> str:
|
195 |
+
"""Analyze text file with automatic encoding detection"""
|
196 |
+
if not validate_file_size(path):
|
197 |
+
return f"โ ๏ธ Error: File size exceeds {MAX_FILE_SIZE/1024/1024:.1f}MB limit."
|
198 |
+
|
199 |
+
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin-1', 'utf-16']
|
200 |
+
|
201 |
+
for encoding in encodings:
|
202 |
+
try:
|
203 |
+
with open(path, "r", encoding=encoding) as f:
|
204 |
+
text = f.read()
|
205 |
+
|
206 |
+
file_size = os.path.getsize(path)
|
207 |
+
size_info = f"**File size**: {file_size/1024:.1f}KB\n\n"
|
208 |
+
|
209 |
+
if len(text) > MAX_CONTENT_CHARS:
|
210 |
+
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
211 |
+
|
212 |
+
return f"**[TXT File: {os.path.basename(path)}]**\n\n{size_info}{text}"
|
213 |
+
except UnicodeDecodeError:
|
214 |
+
continue
|
215 |
+
|
216 |
+
return f"Failed to read text file ({os.path.basename(path)}): Unsupported encoding"
|
217 |
|
218 |
def pdf_to_markdown(pdf_path: str) -> str:
|
219 |
+
"""Convert PDF to markdown with improved error handling"""
|
220 |
+
if not validate_file_size(pdf_path):
|
221 |
+
return f"โ ๏ธ Error: File size exceeds {MAX_FILE_SIZE/1024/1024:.1f}MB limit."
|
222 |
+
|
223 |
text_chunks = []
|
224 |
try:
|
225 |
with open(pdf_path, "rb") as f:
|
226 |
reader = PyPDF2.PdfReader(f)
|
227 |
+
total_pages = len(reader.pages)
|
228 |
+
max_pages = min(5, total_pages)
|
229 |
+
|
230 |
+
text_chunks.append(f"**Total pages**: {total_pages}")
|
231 |
+
text_chunks.append(f"**Showing**: First {max_pages} pages\n")
|
232 |
+
|
233 |
for page_num in range(max_pages):
|
234 |
+
try:
|
235 |
+
page = reader.pages[page_num]
|
236 |
+
page_text = page.extract_text() or ""
|
237 |
+
page_text = page_text.strip()
|
238 |
+
|
239 |
+
if page_text:
|
240 |
+
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
|
241 |
+
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
|
242 |
+
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
|
243 |
+
except Exception as e:
|
244 |
+
text_chunks.append(f"## Page {page_num+1}\n\nFailed to read page: {str(e)}\n")
|
245 |
+
|
246 |
+
if total_pages > max_pages:
|
247 |
+
text_chunks.append(f"\n...({max_pages}/{total_pages} pages shown)...")
|
248 |
except Exception as e:
|
249 |
+
logger.error(f"PDF read error: {e}")
|
250 |
+
return f"Failed to read PDF file ({os.path.basename(pdf_path)}): {str(e)}"
|
251 |
|
252 |
full_text = "\n".join(text_chunks)
|
253 |
if len(full_text) > MAX_CONTENT_CHARS:
|
|
|
255 |
|
256 |
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
257 |
|
|
|
258 |
##############################################################################
|
259 |
+
# File Type Check Functions
|
260 |
##############################################################################
|
261 |
+
def is_image_file(file_path: str) -> bool:
|
262 |
+
"""Check if file is an image"""
|
263 |
+
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
+
def is_video_file(file_path: str) -> bool:
|
266 |
+
"""Check if file is a video"""
|
267 |
+
return bool(re.search(r"\.(mp4|avi|mov|mkv)$", file_path, re.IGNORECASE))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
def is_document_file(file_path: str) -> bool:
|
270 |
+
"""Check if file is a document"""
|
271 |
+
return bool(re.search(r"\.(pdf|csv|txt)$", file_path, re.IGNORECASE))
|
272 |
|
273 |
##############################################################################
|
274 |
+
# Message Processing Functions
|
275 |
##############################################################################
|
276 |
+
def process_new_user_message(message: dict) -> str:
|
277 |
+
"""Process user message and convert to text"""
|
278 |
+
content_parts = [message["text"]]
|
|
|
279 |
|
280 |
+
if not message.get("files"):
|
281 |
+
return message["text"]
|
282 |
+
|
283 |
+
# Classify files
|
284 |
+
csv_files = []
|
285 |
+
txt_files = []
|
286 |
+
pdf_files = []
|
287 |
+
image_files = []
|
288 |
+
video_files = []
|
289 |
+
unknown_files = []
|
290 |
|
291 |
+
for file_path in message["files"]:
|
292 |
+
if file_path.lower().endswith(".csv"):
|
293 |
+
csv_files.append(file_path)
|
294 |
+
elif file_path.lower().endswith(".txt"):
|
295 |
+
txt_files.append(file_path)
|
296 |
+
elif file_path.lower().endswith(".pdf"):
|
297 |
+
pdf_files.append(file_path)
|
298 |
+
elif is_image_file(file_path):
|
299 |
+
image_files.append(file_path)
|
300 |
+
elif is_video_file(file_path):
|
301 |
+
video_files.append(file_path)
|
302 |
else:
|
303 |
+
unknown_files.append(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
+
# Process document files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
for csv_path in csv_files:
|
307 |
csv_analysis = analyze_csv_file(csv_path)
|
308 |
+
content_parts.append(csv_analysis)
|
309 |
|
310 |
for txt_path in txt_files:
|
311 |
txt_analysis = analyze_txt_file(txt_path)
|
312 |
+
content_parts.append(txt_analysis)
|
313 |
|
314 |
for pdf_path in pdf_files:
|
315 |
pdf_markdown = pdf_to_markdown(pdf_path)
|
316 |
+
content_parts.append(pdf_markdown)
|
317 |
+
|
318 |
+
# Warning messages for unsupported files
|
319 |
+
if image_files:
|
320 |
+
image_names = [os.path.basename(f) for f in image_files]
|
321 |
+
content_parts.append(
|
322 |
+
f"\nโ ๏ธ **Image files detected**: {', '.join(image_names)}\n"
|
323 |
+
"This demo currently does not support image analysis. "
|
324 |
+
"Please describe the image content in text if you need help with it."
|
325 |
+
)
|
326 |
+
|
327 |
if video_files:
|
328 |
+
video_names = [os.path.basename(f) for f in video_files]
|
329 |
+
content_parts.append(
|
330 |
+
f"\nโ ๏ธ **Video files detected**: {', '.join(video_names)}\n"
|
331 |
+
"This demo currently does not support video analysis. "
|
332 |
+
"Please describe the video content in text if you need help with it."
|
333 |
+
)
|
334 |
+
|
335 |
+
if unknown_files:
|
336 |
+
unknown_names = [os.path.basename(f) for f in unknown_files]
|
337 |
+
content_parts.append(
|
338 |
+
f"\nโ ๏ธ **Unsupported file format**: {', '.join(unknown_names)}\n"
|
339 |
+
"Supported formats: PDF, CSV, TXT"
|
340 |
+
)
|
341 |
+
|
342 |
+
return "\n\n".join(content_parts)
|
|
|
343 |
|
|
|
|
|
|
|
344 |
def process_history(history: list[dict]) -> list[dict]:
|
345 |
+
"""Convert conversation history to Friendli API format"""
|
346 |
messages = []
|
347 |
+
|
348 |
for item in history:
|
349 |
if item["role"] == "assistant":
|
350 |
+
messages.append({
|
351 |
+
"role": "assistant",
|
352 |
+
"content": item["content"]
|
353 |
+
})
|
354 |
+
else: # user
|
355 |
content = item["content"]
|
356 |
if isinstance(content, str):
|
357 |
+
messages.append({
|
358 |
+
"role": "user",
|
359 |
+
"content": content
|
360 |
+
})
|
361 |
elif isinstance(content, list) and len(content) > 0:
|
362 |
+
# File processing
|
363 |
+
file_info = []
|
364 |
+
for file_path in content:
|
365 |
+
if isinstance(file_path, str):
|
366 |
+
file_info.append(f"[File: {os.path.basename(file_path)}]")
|
367 |
+
if file_info:
|
368 |
+
messages.append({
|
369 |
+
"role": "user",
|
370 |
+
"content": " ".join(file_info)
|
371 |
+
})
|
372 |
+
|
373 |
return messages
|
374 |
|
|
|
375 |
##############################################################################
|
376 |
+
# Streaming Response Handler
|
377 |
##############################################################################
|
378 |
+
def stream_friendli_response(messages: list[dict], max_tokens: int = 1000) -> Iterator[str]:
|
379 |
+
"""Get streaming response from Friendli AI API"""
|
380 |
+
headers = {
|
381 |
+
"Authorization": f"Bearer {FRIENDLI_TOKEN}",
|
382 |
+
"Content-Type": "application/json"
|
383 |
+
}
|
384 |
+
|
385 |
+
payload = {
|
386 |
+
"model": FRIENDLI_MODEL_ID,
|
387 |
+
"messages": messages,
|
388 |
+
"max_tokens": max_tokens,
|
389 |
+
"top_p": 0.8,
|
390 |
+
"temperature": 0.7,
|
391 |
+
"stream": True,
|
392 |
+
"stream_options": {
|
393 |
+
"include_usage": True
|
394 |
+
}
|
395 |
+
}
|
396 |
+
|
397 |
try:
|
398 |
+
response = requests.post(
|
399 |
+
FRIENDLI_API_URL,
|
400 |
+
headers=headers,
|
401 |
+
json=payload,
|
402 |
+
stream=True,
|
403 |
+
timeout=60
|
404 |
)
|
405 |
+
response.raise_for_status()
|
406 |
+
|
407 |
+
full_response = ""
|
408 |
+
for line in response.iter_lines():
|
409 |
+
if line:
|
410 |
+
line_text = line.decode('utf-8')
|
411 |
+
if line_text.startswith("data: "):
|
412 |
+
data_str = line_text[6:]
|
413 |
+
if data_str == "[DONE]":
|
414 |
+
break
|
415 |
+
|
416 |
+
try:
|
417 |
+
data = json.loads(data_str)
|
418 |
+
if "choices" in data and len(data["choices"]) > 0:
|
419 |
+
delta = data["choices"][0].get("delta", {})
|
420 |
+
content = delta.get("content", "")
|
421 |
+
if content:
|
422 |
+
full_response += content
|
423 |
+
yield full_response
|
424 |
+
except json.JSONDecodeError:
|
425 |
+
logger.warning(f"JSON parsing failed: {data_str}")
|
426 |
+
continue
|
427 |
+
|
428 |
+
except requests.exceptions.Timeout:
|
429 |
+
yield "โ ๏ธ Response timeout. Please try again."
|
430 |
+
except requests.exceptions.RequestException as e:
|
431 |
+
logger.error(f"Friendli API network error: {e}")
|
432 |
+
yield f"โ ๏ธ Network error occurred: {str(e)}"
|
433 |
+
except Exception as e:
|
434 |
+
logger.error(f"Friendli API error: {str(e)}")
|
435 |
+
yield f"โ ๏ธ API call error: {str(e)}"
|
436 |
|
437 |
##############################################################################
|
438 |
+
# Main Inference Function
|
439 |
##############################################################################
|
440 |
+
|
441 |
def run(
|
442 |
message: dict,
|
443 |
history: list[dict],
|
|
|
444 |
max_new_tokens: int = 512,
|
445 |
use_web_search: bool = False,
|
446 |
+
use_korean: bool = False,
|
447 |
+
system_prompt: str = "",
|
448 |
) -> Iterator[str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
|
450 |
try:
|
451 |
+
# Prepare system message
|
452 |
+
messages = []
|
453 |
+
|
454 |
+
if use_korean:
|
455 |
+
combined_system_msg = "๋๋ AI ์ด์์คํดํธ ์ญํ ์ด๋ค. ํ๊ตญ์ด๋ก ์น์ ํ๊ณ ์ ํํ๊ฒ ๋ต๋ณํด๋ผ."
|
456 |
+
else:
|
457 |
+
combined_system_msg = "You are an AI assistant. Please respond helpfully and accurately in English."
|
458 |
+
|
459 |
if system_prompt.strip():
|
460 |
+
combined_system_msg += f"\n\n{system_prompt.strip()}"
|
461 |
+
|
462 |
+
# Web search processing
|
463 |
if use_web_search:
|
464 |
+
user_text = message.get("text", "")
|
465 |
+
if user_text:
|
466 |
+
ws_query = extract_keywords(user_text, top_k=5)
|
467 |
+
if ws_query.strip():
|
468 |
+
logger.info(f"[Auto web search keywords] {ws_query!r}")
|
469 |
+
ws_result = do_web_search(ws_query, use_korean=use_korean)
|
470 |
+
if not ws_result.startswith("Web search"):
|
471 |
+
combined_system_msg += f"\n\n[Search Results]\n{ws_result}"
|
472 |
+
if use_korean:
|
473 |
+
combined_system_msg += "\n\n[์ค์: ๋ต๋ณ์ ๊ฒ์ ๊ฒฐ๊ณผ์ ์ถ์ฒ๋ฅผ ๋ฐ๋์ ์ธ์ฉํ์ธ์]"
|
474 |
+
else:
|
475 |
+
combined_system_msg += "\n\n[Important: Always cite sources from search results in your answer]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
|
477 |
+
messages.append({
|
478 |
+
"role": "system",
|
479 |
+
"content": combined_system_msg
|
480 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
481 |
|
482 |
+
# Add conversation history
|
483 |
+
messages.extend(process_history(history))
|
|
|
|
|
|
|
484 |
|
485 |
+
# Process current message
|
486 |
+
user_content = process_new_user_message(message)
|
487 |
+
messages.append({
|
488 |
+
"role": "user",
|
489 |
+
"content": user_content
|
490 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
|
492 |
+
# Debug log
|
493 |
+
logger.debug(f"Total messages: {len(messages)}")
|
|
|
|
|
|
|
494 |
|
495 |
+
# Call Friendli API and stream
|
496 |
+
for response_text in stream_friendli_response(messages, max_new_tokens):
|
497 |
+
yield response_text
|
498 |
+
|
499 |
+
except Exception as e:
|
500 |
+
logger.error(f"run function error: {str(e)}")
|
501 |
+
yield f"โ ๏ธ Sorry, an error occurred: {str(e)}"
|
502 |
|
503 |
##############################################################################
|
504 |
+
# Examples
|
505 |
##############################################################################
|
506 |
examples = [
|
507 |
+
# PDF comparison example
|
508 |
[
|
509 |
{
|
510 |
"text": "Compare the contents of the two PDF files.",
|
|
|
514 |
],
|
515 |
}
|
516 |
],
|
517 |
+
# CSV analysis example
|
518 |
[
|
519 |
{
|
520 |
"text": "Summarize and analyze the contents of the CSV file.",
|
521 |
"files": ["assets/additional-examples/sample-csv.csv"],
|
522 |
}
|
523 |
],
|
524 |
+
# Web search example
|
525 |
[
|
526 |
{
|
527 |
+
"text": "Explain discord.gg/openfreeai",
|
528 |
+
"files": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
}
|
530 |
],
|
531 |
+
# Code generation example
|
532 |
[
|
533 |
{
|
534 |
+
"text": "Write Python code to generate Fibonacci sequence.",
|
535 |
+
"files": [],
|
536 |
}
|
537 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
]
|
539 |
|
540 |
##############################################################################
|
541 |
+
# Gradio UI - CSS Styles (Removed blue colors)
|
542 |
##############################################################################
|
543 |
css = """
|
544 |
+
/* Full width UI */
|
545 |
.gradio-container {
|
546 |
+
background: rgba(255, 255, 255, 0.95);
|
547 |
padding: 30px 40px;
|
548 |
+
margin: 20px auto;
|
549 |
width: 100% !important;
|
550 |
+
max-width: none !important;
|
551 |
+
border-radius: 12px;
|
552 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
553 |
}
|
554 |
+
|
555 |
.fillable {
|
556 |
width: 100% !important;
|
557 |
max-width: 100% !important;
|
558 |
}
|
559 |
+
|
560 |
+
/* Background */
|
561 |
body {
|
562 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #e0e0e0 100%);
|
563 |
margin: 0;
|
564 |
padding: 0;
|
565 |
+
font-family: 'Segoe UI', 'Helvetica Neue', Arial, sans-serif;
|
566 |
color: #333;
|
567 |
}
|
568 |
+
|
569 |
+
/* Button styles - neutral gray */
|
570 |
button, .btn {
|
571 |
+
background: #6b7280 !important;
|
572 |
+
border: none;
|
573 |
+
color: white !important;
|
574 |
+
padding: 10px 20px;
|
575 |
text-transform: uppercase;
|
576 |
+
font-weight: 600;
|
577 |
+
letter-spacing: 0.5px;
|
578 |
cursor: pointer;
|
579 |
+
border-radius: 6px;
|
580 |
+
transition: all 0.3s ease;
|
581 |
}
|
582 |
+
|
583 |
button:hover, .btn:hover {
|
584 |
+
background: #4b5563 !important;
|
585 |
+
transform: translateY(-1px);
|
586 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
587 |
}
|
588 |
|
589 |
+
/* Examples section */
|
590 |
#examples_container, .examples-container {
|
591 |
+
margin: 20px auto;
|
592 |
width: 90%;
|
593 |
+
background: rgba(255, 255, 255, 0.8);
|
594 |
+
padding: 20px;
|
595 |
+
border-radius: 8px;
|
596 |
}
|
597 |
+
|
598 |
#examples_row, .examples-row {
|
599 |
justify-content: center;
|
|
|
600 |
}
|
601 |
|
602 |
+
/* Example buttons */
|
603 |
.gr-samples-table button,
|
|
|
|
|
604 |
.gr-examples button,
|
605 |
+
.examples button {
|
606 |
+
background: #f0f2f5 !important;
|
607 |
+
border: 1px solid #d1d5db;
|
608 |
+
color: #374151 !important;
|
609 |
+
margin: 5px;
|
610 |
+
font-size: 14px;
|
|
|
|
|
611 |
}
|
612 |
|
|
|
613 |
.gr-samples-table button:hover,
|
|
|
|
|
614 |
.gr-examples button:hover,
|
615 |
+
.examples button:hover {
|
616 |
+
background: #e5e7eb !important;
|
617 |
+
border-color: #9ca3af;
|
|
|
|
|
|
|
618 |
}
|
619 |
|
620 |
+
/* Chat interface */
|
621 |
+
.chatbox, .chatbot {
|
622 |
+
background: white !important;
|
623 |
+
border-radius: 8px;
|
624 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
|
625 |
}
|
626 |
|
627 |
+
.message {
|
628 |
+
padding: 15px;
|
629 |
+
margin: 10px 0;
|
630 |
+
border-radius: 8px;
|
631 |
}
|
632 |
|
633 |
+
/* Input styles */
|
634 |
+
.multimodal-textbox, textarea, input[type="text"] {
|
635 |
+
background: white !important;
|
636 |
+
border: 1px solid #d1d5db;
|
637 |
+
border-radius: 6px;
|
638 |
+
padding: 10px;
|
639 |
+
font-size: 16px;
|
640 |
}
|
641 |
|
642 |
+
.multimodal-textbox:focus, textarea:focus, input[type="text"]:focus {
|
643 |
+
border-color: #6b7280;
|
644 |
+
outline: none;
|
645 |
+
box-shadow: 0 0 0 3px rgba(107, 114, 128, 0.1);
|
646 |
}
|
|
|
647 |
|
648 |
+
/* Warning messages */
|
649 |
+
.warning-box {
|
650 |
+
background: #fef3c7 !important;
|
651 |
+
border: 1px solid #f59e0b;
|
652 |
+
border-radius: 8px;
|
653 |
+
padding: 15px;
|
654 |
+
margin: 10px 0;
|
655 |
+
color: #92400e;
|
656 |
+
}
|
657 |
|
658 |
+
/* Headings */
|
659 |
+
h1, h2, h3 {
|
660 |
+
color: #1f2937;
|
661 |
+
}
|
662 |
|
663 |
+
/* Links - neutral gray */
|
664 |
+
a {
|
665 |
+
color: #6b7280;
|
666 |
+
text-decoration: none;
|
667 |
+
}
|
668 |
|
669 |
+
a:hover {
|
670 |
+
text-decoration: underline;
|
671 |
+
color: #4b5563;
|
672 |
+
}
|
|
|
673 |
|
674 |
+
/* Slider */
|
675 |
+
.gr-slider {
|
676 |
+
margin: 15px 0;
|
677 |
+
}
|
678 |
+
|
679 |
+
/* Checkbox */
|
680 |
+
input[type="checkbox"] {
|
681 |
+
width: 18px;
|
682 |
+
height: 18px;
|
683 |
+
margin-right: 8px;
|
684 |
+
}
|
685 |
+
|
686 |
+
/* Scrollbar */
|
687 |
+
::-webkit-scrollbar {
|
688 |
+
width: 8px;
|
689 |
+
height: 8px;
|
690 |
+
}
|
691 |
+
|
692 |
+
::-webkit-scrollbar-track {
|
693 |
+
background: #f1f1f1;
|
694 |
+
}
|
695 |
+
|
696 |
+
::-webkit-scrollbar-thumb {
|
697 |
+
background: #888;
|
698 |
+
border-radius: 4px;
|
699 |
+
}
|
700 |
+
|
701 |
+
::-webkit-scrollbar-thumb:hover {
|
702 |
+
background: #555;
|
703 |
+
}
|
704 |
+
"""
|
705 |
+
|
706 |
+
##############################################################################
|
707 |
+
# Gradio UI Main
|
708 |
+
##############################################################################
|
709 |
+
with gr.Blocks(css=css, title="Gemma-3-R1984-27B Chatbot") as demo:
|
710 |
+
# Title
|
711 |
+
gr.Markdown("# ๐ค Gemma-3-R1984-27B Chatbot")
|
712 |
+
gr.Markdown("Community: [https://discord.gg/openfreeai](https://discord.gg/openfreeai)")
|
713 |
|
714 |
+
# UI Components
|
715 |
+
with gr.Row():
|
716 |
+
with gr.Column(scale=2):
|
717 |
+
web_search_checkbox = gr.Checkbox(
|
718 |
+
label="๐ Enable Deep Research (Web Search)",
|
719 |
+
value=False,
|
720 |
+
info="Check for questions requiring latest information"
|
721 |
+
)
|
722 |
+
with gr.Column(scale=1):
|
723 |
+
korean_checkbox = gr.Checkbox(
|
724 |
+
label="๐ฐ๐ท ํ๊ธ (Korean)",
|
725 |
+
value=False,
|
726 |
+
info="Check for Korean responses"
|
727 |
+
)
|
728 |
+
with gr.Column(scale=1):
|
729 |
+
max_tokens_slider = gr.Slider(
|
730 |
+
label="Max Tokens",
|
731 |
+
minimum=100,
|
732 |
+
maximum=8000,
|
733 |
+
step=50,
|
734 |
+
value=1000,
|
735 |
+
info="Adjust response length"
|
736 |
+
)
|
737 |
|
738 |
+
# Main chat interface
|
739 |
chat = gr.ChatInterface(
|
740 |
fn=run,
|
741 |
type="messages",
|
742 |
+
chatbot=gr.Chatbot(type="messages", scale=1),
|
743 |
textbox=gr.MultimodalTextbox(
|
744 |
file_types=[
|
745 |
".webp", ".png", ".jpg", ".jpeg", ".gif",
|
746 |
".mp4", ".csv", ".txt", ".pdf"
|
747 |
],
|
748 |
file_count="multiple",
|
749 |
+
autofocus=True,
|
750 |
+
placeholder="Enter text or upload PDF, CSV, TXT files. (Images/videos not supported in this demo)"
|
751 |
),
|
752 |
multimodal=True,
|
753 |
additional_inputs=[
|
|
|
754 |
max_tokens_slider,
|
755 |
web_search_checkbox,
|
756 |
+
korean_checkbox,
|
757 |
],
|
758 |
stop_btn=False,
|
|
|
759 |
examples=examples,
|
760 |
run_examples_on_click=False,
|
761 |
cache_examples=False,
|
|
|
762 |
delete_cache=(1800, 1800),
|
763 |
)
|
764 |
|
|
|
|
|
|
|
|
|
|
|
|
|
765 |
if __name__ == "__main__":
|
766 |
+
demo.launch()
|
|