Spaces:
Running
Running
File size: 6,815 Bytes
234eac0 ba43ba6 234eac0 87dacef 234eac0 87dacef 234eac0 ba43ba6 234eac0 6130712 ba43ba6 6130712 234eac0 ba43ba6 1aaad7e 234eac0 b791c4a 234eac0 ba43ba6 234eac0 87dacef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
from typing import List
from chainlit.types import AskFileResponse
from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader, PDFLoader
from aimakerspace.openai_utils.prompts import (
UserRolePrompt,
SystemRolePrompt,
AssistantRolePrompt,
)
from aimakerspace.openai_utils.embedding import EmbeddingModel
from aimakerspace.vectordatabase import VectorDatabase
from aimakerspace.openai_utils.chatmodel import ChatOpenAI
import chainlit as cl
from chainlit import user_session
from chainlit.element import Text
system_template = """\
Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer."""
system_role_prompt = SystemRolePrompt(system_template)
user_prompt_template = """\
Context:
{context}
Question:
{question}
"""
user_role_prompt = UserRolePrompt(user_prompt_template)
@cl.on_chat_start
async def init_sidebar():
# μ¬μ΄λλ° ν€λ κΎΈλ―ΈκΈ°
await cl.Sidebar(
cl.Text(content="π **νμΌ μ
λ‘λ μΉμ
**", style="heading3"),
cl.FilePicker(
accept=[".pdf", ".txt"],
max_size_mb=2,
on_upload=handle_upload,
label="π€ PDF/TXT μ
λ‘λ",
description="μ΅λ 2MB νμΌλ§ μ
λ‘λ κ°λ₯ν©λλ€"
),
cl.Separator(),
cl.Text(content="π **λ¬Έμ λΆμ μν**", style="heading4"),
cl.ProgressRing(id="progress", visible=False),
cl.Text(id="status", content="λκΈ° μ€...", style="caption"),
title="π λ¬Έμ μ§μ μμ€ν
",
persistent=True # π μ¬μ΄λλ° κ³ μ μ€μ
).send()
async def handle_upload(file: AskFileResponse):
# μ§ν μν μ
λ°μ΄νΈ
status = user_session.get("status")
progress = user_session.get("progress")
await status.update(content=f"π {file.name} λΆμ μ€...")
await progress.update(visible=True)
try:
# νμΌ μ²λ¦¬ λ‘μ§
texts = process_file(file)
# λ²‘ν° DB ꡬμΆ
vector_db = VectorDatabase()
vector_db = await vector_db.abuild_from_list(texts)
# μΈμ
μ μ μ₯
user_session.set("vector_db", vector_db)
# μν μ
λ°μ΄νΈ
await status.update(content=f"β
{len(texts)}κ° μ²ν¬ μ²λ¦¬ μλ£!")
await progress.update(visible=False)
# νμΌ μ 보 μμ½ νμ
await cl.Accordion(
title="π μ
λ‘λ λ¬Έμ μ 보",
content=[
cl.Text(f"νμΌλͺ
: {file.name}"),
cl.Text(f"ν¬κΈ°: {file.size/1024:.1f}KB"),
cl.Text(f"λΆμ μκ°: {datetime.now().strftime('%H:%M:%S')}")
],
expanded=False
).send()
except Exception as e:
await cl.Error(
title="νμΌ μ²λ¦¬ μ€λ₯",
content=f"{str(e)}"
).send()
class RetrievalAugmentedQAPipeline:
def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None:
self.llm = llm
self.vector_db_retriever = vector_db_retriever
async def arun_pipeline(self, user_query: str):
context_list = self.vector_db_retriever.search_by_text(user_query, k=4)
context_prompt = ""
for context in context_list:
context_prompt += context[0] + "\n"
formatted_system_prompt = system_role_prompt.create_message()
formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt)
async def generate_response():
async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]):
yield chunk
return {"response": generate_response(), "context": context_list}
text_splitter = CharacterTextSplitter()
def process_file(file: AskFileResponse):
import tempfile
import shutil
print(f"Processing file: {file.name}")
# Create a temporary file with the correct extension
suffix = f".{file.name.split('.')[-1]}"
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_file:
# Copy the uploaded file content to the temporary file
shutil.copyfile(file.path, temp_file.name)
print(f"Created temporary file at: {temp_file.name}")
# Create appropriate loader
if file.name.lower().endswith('.pdf'):
loader = PDFLoader(temp_file.name)
else:
loader = TextFileLoader(temp_file.name)
try:
# Load and process the documents
documents = loader.load_documents()
texts = text_splitter.split_texts(documents)
return texts
finally:
# Clean up the temporary file
try:
os.unlink(temp_file.name)
except Exception as e:
print(f"Error cleaning up temporary file: {e}")
@cl.on_chat_start
async def on_chat_start():
files = None
# Wait for the user to upload a file
while files == None:
files = await cl.AskFileMessage(
content="Please upload a Text or PDF file to begin!",
accept=["text/plain", "application/pdf"],
max_size_mb=2,
timeout=180,
).send()
file = files[0]
msg = cl.Message(
content=f"Processing `{file.name}`..."
)
await msg.send()
# load the file
texts = process_file(file)
print(f"Processing {len(texts)} text chunks")
# Create a dict vector store
vector_db = VectorDatabase()
vector_db = await vector_db.abuild_from_list(texts)
chat_openai = ChatOpenAI()
# Create a chain
retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline(
vector_db_retriever=vector_db,
llm=chat_openai
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", retrieval_augmented_qa_pipeline)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
# μλ΅ μ€νμΌ κ°μ
msg = cl.Message(
content="",
actions=[
cl.Action(name="source", value="π μμ€ λ³΄κΈ°"),
cl.Action(name="feedback", value="π¬ νΌλλ°± λ¨κΈ°κΈ°")
]
)
async for token in result["response"]:
await msg.stream_token(token, is_final=False)
# μ΅μ’
λ©μμ§ ν¬λ§·ν
final_content = f"""
π§ **AI λΆμ κ²°κ³Ό**
{msg.content}
π μ°Έμ‘° λ¬Έμ₯:
{chr(10).join([f'- {ctx[0][:50]}...' for ctx in result['context']])}
"""
await msg.update(content=final_content)
|