import gradio as gr import pandas as pd import chardet from io import BytesIO def detect_encoding(file_bytes): """Detect the encoding of the file.""" # Use chardet to detect encoding result = chardet.detect(file_bytes) return result['encoding'] def convert_file(input_file, conversion_type): # Check if a file was uploaded if input_file is None: return None, "Please upload a file." # Read the file content try: # Try reading from file-like object file_bytes = input_file.read() file_name = input_file.name except AttributeError: # If there's an AttributeError, treat input_file as a file path file_name = input_file with open(file_name, "rb") as f: file_bytes = f.read() file_extension = file_name.lower().split('.')[-1] df = None output_file = None converted_format = None try: # Conversion: CSV to Parquet if conversion_type == "CSV to Parquet": if file_extension != "csv": return None, "For CSV to Parquet conversion, please upload a CSV file." # Detect the encoding of the CSV file encoding = detect_encoding(file_bytes) # Try to read with detected encoding try: df = pd.read_csv(BytesIO(file_bytes), encoding=encoding) except Exception as e: # If that fails, try with other common encodings for enc in ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']: try: df = pd.read_csv(BytesIO(file_bytes), encoding=enc) encoding = enc break except: continue if df is None: return None, f"Failed to read CSV with any encoding. Error: {str(e)}" output_file = "output.parquet" df.to_parquet(output_file, index=False) converted_format = "Parquet" # Conversion: Parquet to CSV elif conversion_type == "Parquet to CSV": if file_extension != "parquet": return None, "For Parquet to CSV conversion, please upload a Parquet file." df = pd.read_parquet(BytesIO(file_bytes)) output_file = "output.csv" df.to_csv(output_file, index=False, encoding='utf-8') converted_format = "CSV" else: return None, "Invalid conversion type selected." # Generate a preview of the top 10 rows preview = df.head(10).to_string(index=False) info_message = ( f"Input file: {file_name}\n" f"Converted file format: {converted_format}\n" ) if conversion_type == "CSV to Parquet": info_message += f"Detected encoding: {encoding}\n" info_message += f"\nPreview (Top 10 Rows):\n{preview}" return output_file, info_message except Exception as e: return None, f"Error during conversion: {str(e)}" # Custom CSS for a modern and sleek look custom_css = """ body { background-color: #f4f4f4; font-family: 'Helvetica Neue', Arial, sans-serif; } .gradio-container { max-width: 900px; margin: 40px auto; padding: 20px; background-color: #ffffff; border-radius: 12px; box-shadow: 0 8px 16px rgba(0,0,0,0.1); } h1, h2 { color: #333333; } .gradio-input, .gradio-output { margin-bottom: 20px; } .gradio-button { background-color: #4CAF50 !important; color: white !important; border: none !important; padding: 10px 20px !important; font-size: 16px !important; border-radius: 6px !important; cursor: pointer; } .gradio-button:hover { background-color: #45a049 !important; } """ with gr.Blocks(css=custom_css, title="CSV <-> Parquet Converter") as demo: gr.Markdown("# CSV <-> Parquet Converter") gr.Markdown("Upload a CSV or Parquet file and select the conversion type. The app converts the file to the opposite format and displays a preview of the top 10 rows.") with gr.Row(): with gr.Column(scale=1): input_file = gr.File(label="Upload CSV or Parquet File") with gr.Column(scale=1): conversion_type = gr.Radio( choices=["CSV to Parquet", "Parquet to CSV"], label="Conversion Type", value="CSV to Parquet" # Set default value ) convert_button = gr.Button("Convert", elem_classes=["gradio-button"]) with gr.Row(): output_file = gr.File(label="Converted File") preview = gr.Textbox(label="Preview (Top 10 Rows)", lines=15) convert_button.click(fn=convert_file, inputs=[input_file, conversion_type], outputs=[output_file, preview]) gr.Markdown(""" ### Notes: - This converter can handle various CSV encodings - Parquet files are always encoded in UTF-8 - The preview shows only the first 10 rows of data """) if __name__ == "__main__": demo.launch()