Spaces:
Paused
Paused
| # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a | |
| # copy of this software and associated documentation files (the "Software"), | |
| # to deal in the Software without restriction, including without limitation | |
| # the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| # and/or sell copies of the Software, and to permit persons to whom the | |
| # Software is furnished to do so, subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in | |
| # all copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
| # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
| # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
| # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | |
| # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | |
| # DEALINGS IN THE SOFTWARE. | |
| # | |
| # SPDX-FileCopyrightText: Copyright (c) 2021 NVIDIA CORPORATION & AFFILIATES | |
| # SPDX-License-Identifier: MIT | |
| from typing import List | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn.parallel import DistributedDataParallel | |
| from torch.utils.data import DataLoader | |
| from tqdm import tqdm | |
| from se3_transformer.runtime import gpu_affinity | |
| from se3_transformer.runtime.arguments import PARSER | |
| from se3_transformer.runtime.callbacks import BaseCallback | |
| from se3_transformer.runtime.loggers import DLLogger | |
| from se3_transformer.runtime.utils import to_cuda, get_local_rank | |
| def evaluate(model: nn.Module, | |
| dataloader: DataLoader, | |
| callbacks: List[BaseCallback], | |
| args): | |
| model.eval() | |
| for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), unit='batch', desc=f'Evaluation', | |
| leave=False, disable=(args.silent or get_local_rank() != 0)): | |
| *input, target = to_cuda(batch) | |
| for callback in callbacks: | |
| callback.on_batch_start() | |
| with torch.cuda.amp.autocast(enabled=args.amp): | |
| pred = model(*input) | |
| for callback in callbacks: | |
| callback.on_validation_step(input, target, pred) | |
| if __name__ == '__main__': | |
| from se3_transformer.runtime.callbacks import QM9MetricCallback, PerformanceCallback | |
| from se3_transformer.runtime.utils import init_distributed, seed_everything | |
| from se3_transformer.model import SE3TransformerPooled, Fiber | |
| from se3_transformer.data_loading import QM9DataModule | |
| import torch.distributed as dist | |
| import logging | |
| import sys | |
| is_distributed = init_distributed() | |
| local_rank = get_local_rank() | |
| args = PARSER.parse_args() | |
| logging.getLogger().setLevel(logging.CRITICAL if local_rank != 0 or args.silent else logging.INFO) | |
| logging.info('====== SE(3)-Transformer ======') | |
| logging.info('| Inference on the test set |') | |
| logging.info('===============================') | |
| if not args.benchmark and args.load_ckpt_path is None: | |
| logging.error('No load_ckpt_path provided, you need to provide a saved model to evaluate') | |
| sys.exit(1) | |
| if args.benchmark: | |
| logging.info('Running benchmark mode with one warmup pass') | |
| if args.seed is not None: | |
| seed_everything(args.seed) | |
| major_cc, minor_cc = torch.cuda.get_device_capability() | |
| logger = DLLogger(args.log_dir, filename=args.dllogger_name) | |
| datamodule = QM9DataModule(**vars(args)) | |
| model = SE3TransformerPooled( | |
| fiber_in=Fiber({0: datamodule.NODE_FEATURE_DIM}), | |
| fiber_out=Fiber({0: args.num_degrees * args.num_channels}), | |
| fiber_edge=Fiber({0: datamodule.EDGE_FEATURE_DIM}), | |
| output_dim=1, | |
| tensor_cores=(args.amp and major_cc >= 7) or major_cc >= 8, # use Tensor Cores more effectively | |
| **vars(args) | |
| ) | |
| callbacks = [QM9MetricCallback(logger, targets_std=datamodule.targets_std, prefix='test')] | |
| model.to(device=torch.cuda.current_device()) | |
| if args.load_ckpt_path is not None: | |
| checkpoint = torch.load(str(args.load_ckpt_path), map_location={'cuda:0': f'cuda:{local_rank}'}) | |
| model.load_state_dict(checkpoint['state_dict']) | |
| if is_distributed: | |
| nproc_per_node = torch.cuda.device_count() | |
| affinity = gpu_affinity.set_affinity(local_rank, nproc_per_node) | |
| model = DistributedDataParallel(model, device_ids=[local_rank], output_device=local_rank) | |
| test_dataloader = datamodule.test_dataloader() if not args.benchmark else datamodule.train_dataloader() | |
| evaluate(model, | |
| test_dataloader, | |
| callbacks, | |
| args) | |
| for callback in callbacks: | |
| callback.on_validation_end() | |
| if args.benchmark: | |
| world_size = dist.get_world_size() if dist.is_initialized() else 1 | |
| callbacks = [PerformanceCallback(logger, args.batch_size * world_size, warmup_epochs=1, mode='inference')] | |
| for _ in range(6): | |
| evaluate(model, | |
| test_dataloader, | |
| callbacks, | |
| args) | |
| callbacks[0].on_epoch_end() | |
| callbacks[0].on_fit_end() | |