File size: 11,505 Bytes
4a2e1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import logging
import gradio as gr
import pandas as pd
import torch
import numpy as np
import matplotlib.pyplot as plt
from GoogleNews import GoogleNews
from transformers import pipeline
from datetime import datetime, timedelta
import matplotlib
matplotlib.use('Agg')

# Set up logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

SENTIMENT_ANALYSIS_MODEL = (
    "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {DEVICE}")
logging.info("Initializing sentiment analysis model...")
sentiment_analyzer = pipeline(
    "sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
)
logging.info("Model initialized successfully")

def fetch_articles(query, max_articles=30):
    try:
        logging.info(f"Fetching up to {max_articles} articles for query: '{query}'")
        googlenews = GoogleNews(lang="en")
        googlenews.search(query)
        
        # ์ฒซ ํŽ˜์ด์ง€ ๊ฒฐ๊ณผ ๊ฐ€์ ธ์˜ค๊ธฐ
        articles = googlenews.result()
        
        # ๋ชฉํ‘œ ๊ธฐ์‚ฌ ์ˆ˜์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ์ถ”๊ฐ€ ํŽ˜์ด์ง€ ๊ฐ€์ ธ์˜ค๊ธฐ
        page = 2
        while len(articles) < max_articles and page <= 10:  # ์ตœ๋Œ€ 10ํŽ˜์ด์ง€๊นŒ์ง€๋งŒ ์‹œ๋„
            logging.info(f"Fetched {len(articles)} articles so far. Getting page {page}...")
            googlenews.get_page(page)
            page_results = googlenews.result()
            
            # ์ƒˆ ๊ฒฐ๊ณผ๊ฐ€ ์—†์œผ๋ฉด ์ค‘๋‹จ
            if not page_results:
                logging.info(f"No more results found after page {page-1}")
                break
                
            articles.extend(page_results)
            page += 1
            
        # ์ตœ๋Œ€ ๊ธฐ์‚ฌ ์ˆ˜๋กœ ์ œํ•œ
        articles = articles[:max_articles]
        
        logging.info(f"Successfully fetched {len(articles)} articles")
        return articles
    except Exception as e:
        logging.error(
            f"Error while searching articles for query: '{query}'. Error: {e}"
        )
        raise gr.Error(
            f"Unable to search articles for query: '{query}'. Try again later...",
            duration=5,
        )

def analyze_article_sentiment(article):
    logging.info(f"Analyzing sentiment for article: {article['title']}")
    sentiment = sentiment_analyzer(article["desc"])[0]
    article["sentiment"] = sentiment
    return article

def calculate_time_weight(article_date_str):
    """
    ๊ธฐ์‚ฌ ์‹œ๊ฐ„ ๊ธฐ์ค€์œผ๋กœ ๊ฐ€์ค‘์น˜ ๊ณ„์‚ฐ 
    - 1์‹œ๊ฐ„๋‹น 1%์”ฉ ๊ฐ์†Œ, ์ตœ๋Œ€ 24์‹œ๊ฐ„๊นŒ์ง€๋งŒ ๊ณ ๋ ค
    - 1์‹œ๊ฐ„ ๋‚ด ๊ธฐ์‚ฌ: 24% ๊ฐ€์ค‘์น˜
    - 10์‹œ๊ฐ„ ์ „ ๊ธฐ์‚ฌ: 15% ๊ฐ€์ค‘์น˜
    - 24์‹œ๊ฐ„ ์ด์ƒ ์ „ ๊ธฐ์‚ฌ: 1% ๊ฐ€์ค‘์น˜
    """
    try:
        # ๊ธฐ์‚ฌ ๋‚ ์งœ ๋ฌธ์ž์—ด ํŒŒ์‹ฑ (๋‹ค์–‘ํ•œ ํ˜•์‹ ์ฒ˜๋ฆฌ)
        date_formats = [
            '%a, %d %b %Y %H:%M:%S %z',  # ๊ธฐ๋ณธ GoogleNews ํ˜•์‹
            '%Y-%m-%d %H:%M:%S',
            '%a, %d %b %Y %H:%M:%S',
            '%Y-%m-%dT%H:%M:%S%z',
            '%a %b %d, %Y',
            '%d %b %Y'
        ]
        
        parsed_date = None
        for format_str in date_formats:
            try:
                parsed_date = datetime.strptime(article_date_str, format_str)
                break
            except ValueError:
                continue
        
        # ์–ด๋–ค ํ˜•์‹์œผ๋กœ๋„ ํŒŒ์‹ฑํ•  ์ˆ˜ ์—†์œผ๋ฉด ํ˜„์žฌ ์‹œ๊ฐ„ ๊ธฐ์ค€ 24์‹œ๊ฐ„ ์ „์œผ๋กœ ๊ฐ€์ •
        if parsed_date is None:
            logging.warning(f"Could not parse date: {article_date_str}, using default 24h ago")
            return 0.01  # ์ตœ์†Œ ๊ฐ€์ค‘์น˜ 1%
            
        # ํ˜„์žฌ ์‹œ๊ฐ„๊ณผ์˜ ์ฐจ์ด ๊ณ„์‚ฐ (์‹œ๊ฐ„ ๋‹จ์œ„)
        now = datetime.now()
        if parsed_date.tzinfo is not None:
            now = now.replace(tzinfo=parsed_date.tzinfo)
            
        hours_diff = (now - parsed_date).total_seconds() / 3600
        
        # 24์‹œ๊ฐ„ ์ด๋‚ด์ธ ๊ฒฝ์šฐ๋งŒ ๊ณ ๋ ค
        if hours_diff <= 24:
            weight = 0.24 - (0.01 * int(hours_diff))  # 1์‹œ๊ฐ„๋‹น 1%์”ฉ ๊ฐ์†Œ
            return max(0.01, weight)  # ์ตœ์†Œ 1% ๋ณด์žฅ
        else:
            return 0.01  # 24์‹œ๊ฐ„ ์ด์ƒ ์ง€๋‚œ ๊ธฐ์‚ฌ๋Š” 1% ๊ฐ€์ค‘์น˜
    except Exception as e:
        logging.error(f"Error calculating time weight: {e}")
        return 0.01  # ์˜ค๋ฅ˜ ๋ฐœ์ƒ ์‹œ ์ตœ์†Œ ๊ฐ€์ค‘์น˜ ์ ์šฉ

def calculate_sentiment_score(sentiment_label, time_weight):
    """
    ๊ฐ์„ฑ ๋ ˆ์ด๋ธ”์— ๋”ฐ๋ฅธ ๊ธฐ๋ณธ ์ ์ˆ˜ ๊ณ„์‚ฐ ๋ฐ ์‹œ๊ฐ„ ๊ฐ€์ค‘์น˜ ์ ์šฉ
    - positive: +3์ 
    - neutral: 0์ 
    - negative: -3์ 
    """
    base_score = {
        'positive': 3,
        'neutral': 0,
        'negative': -3
    }.get(sentiment_label, 0)
    
    # ๊ฐ€์ค‘์น˜๋ฅผ ์ ์šฉํ•œ ์ถ”๊ฐ€ ์ ์ˆ˜ ๊ณ„์‚ฐ
    weighted_addition = base_score * time_weight
    
    return base_score, weighted_addition

def analyze_asset_sentiment(asset_name):
    logging.info(f"Starting sentiment analysis for asset: {asset_name}")
    logging.info("Fetching up to 30 articles")
    articles = fetch_articles(asset_name, max_articles=30)
    logging.info("Analyzing sentiment of each article")
    analyzed_articles = [analyze_article_sentiment(article) for article in articles]
    
    # ๊ฐ ๊ธฐ์‚ฌ์— ๋Œ€ํ•œ ์‹œ๊ฐ„ ๊ฐ€์ค‘์น˜ ๋ฐ ๊ฐ์„ฑ ์ ์ˆ˜ ๊ณ„์‚ฐ
    for article in analyzed_articles:
        time_weight = calculate_time_weight(article["date"])
        article["time_weight"] = time_weight
        
        sentiment_label = article["sentiment"]["label"]
        base_score, weighted_addition = calculate_sentiment_score(sentiment_label, time_weight)
        
        article["base_score"] = base_score
        article["weighted_addition"] = weighted_addition
        article["total_score"] = base_score + weighted_addition
    
    logging.info("Sentiment analysis completed")
    
    # ์ข…ํ•ฉ ์ ์ˆ˜ ๊ณ„์‚ฐ ๋ฐ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
    sentiment_summary = create_sentiment_summary(analyzed_articles, asset_name)
    
    return convert_to_dataframe(analyzed_articles), sentiment_summary

def create_sentiment_summary(analyzed_articles, asset_name):
    """
    ๊ฐ์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๊ณ  ๊ทธ๋ž˜ํ”„๋กœ ์‹œ๊ฐํ™”
    """
    total_articles = len(analyzed_articles)
    positive_count = sum(1 for a in analyzed_articles if a["sentiment"]["label"] == "positive")
    neutral_count = sum(1 for a in analyzed_articles if a["sentiment"]["label"] == "neutral")
    negative_count = sum(1 for a in analyzed_articles if a["sentiment"]["label"] == "negative")
    
    # ๊ธฐ๋ณธ ์ ์ˆ˜ ํ•ฉ๊ณ„
    base_score_sum = sum(a["base_score"] for a in analyzed_articles)
    
    # ๊ฐ€์ค‘์น˜ ์ ์šฉ ์ ์ˆ˜ ํ•ฉ๊ณ„
    weighted_score_sum = sum(a["total_score"] for a in analyzed_articles)
    
    # ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
    
    # 1. ๊ฐ์„ฑ ๋ถ„ํฌ ํŒŒ์ด ์ฐจํŠธ
    labels = ['Positive', 'Neutral', 'Negative']
    sizes = [positive_count, neutral_count, negative_count]
    colors = ['green', 'gray', 'red']
    
    ax1.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
    ax1.axis('equal')
    ax1.set_title(f'Sentiment Distribution for {asset_name}')
    
    # 2. ์‹œ๊ฐ„๋ณ„ ๊ฐ€์ค‘์น˜ ์ ์šฉ ์ ์ˆ˜ (์ •๋ ฌ)
    sorted_articles = sorted(analyzed_articles, key=lambda x: x.get("date", ""), reverse=True)
    
    # ์ตœ๋Œ€ ํ‘œ์‹œํ•  ๊ธฐ์‚ฌ ์ˆ˜ (๊ฐ€๋…์„ฑ์„ ์œ„ํ•ด)
    max_display = min(15, len(sorted_articles))
    display_articles = sorted_articles[:max_display]
    
    dates = [a.get("date", "")[:10] for a in display_articles]  # ๋‚ ์งœ ๋ถ€๋ถ„๋งŒ ํ‘œ์‹œ
    scores = [a.get("total_score", 0) for a in display_articles]
    
    # ์ ์ˆ˜์— ๋”ฐ๋ฅธ ์ƒ‰์ƒ ์„ค์ •
    bar_colors = ['green' if s > 0 else 'red' if s < 0 else 'gray' for s in scores]
    
    bars = ax2.bar(range(len(dates)), scores, color=bar_colors)
    ax2.set_xticks(range(len(dates)))
    ax2.set_xticklabels(dates, rotation=45, ha='right')
    ax2.set_ylabel('Weighted Sentiment Score')
    ax2.set_title(f'Recent Article Scores for {asset_name}')
    ax2.axhline(y=0, color='black', linestyle='-', alpha=0.3)
    
    # ์š”์•ฝ ํ…์ŠคํŠธ ์ถ”๊ฐ€
    summary_text = f"""
    Analysis Summary for {asset_name}:
    Total Articles: {total_articles}
    Positive: {positive_count} ({positive_count/total_articles*100:.1f}%)
    Neutral: {neutral_count} ({neutral_count/total_articles*100:.1f}%)
    Negative: {negative_count} ({negative_count/total_articles*100:.1f}%)
    
    Base Score Sum: {base_score_sum:.2f}
    Weighted Score Sum: {weighted_score_sum:.2f}
    """
    
    plt.figtext(0.5, 0.01, summary_text, ha='center', fontsize=10, bbox={"facecolor":"orange", "alpha":0.2, "pad":5})
    
    plt.tight_layout(rect=[0, 0.1, 1, 0.95])
    
    # ์ด๋ฏธ์ง€ ์ €์žฅ
    fig_path = f"sentiment_summary_{asset_name.replace(' ', '_')}.png"
    plt.savefig(fig_path)
    plt.close()
    
    return fig_path

def convert_to_dataframe(analyzed_articles):
    df = pd.DataFrame(analyzed_articles)
    df["Title"] = df.apply(
        lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
        axis=1,
    )
    df["Description"] = df["desc"]
    df["Date"] = df["date"]
    
    def sentiment_badge(sentiment):
        colors = {
            "negative": "red",
            "neutral": "gray",
            "positive": "green",
        }
        color = colors.get(sentiment, "grey")
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
    
    df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
    
    # ์ ์ˆ˜ ์ปฌ๋Ÿผ ์ถ”๊ฐ€
    df["Base Score"] = df["base_score"]
    df["Weight"] = df["time_weight"].apply(lambda x: f"{x*100:.0f}%")
    df["Total Score"] = df["total_score"].apply(lambda x: f"{x:.2f}")
    
    return df[["Sentiment", "Title", "Description", "Date", "Base Score", "Weight", "Total Score"]]

with gr.Blocks() as iface:
    gr.Markdown("# Trading Asset Sentiment Analysis")
    gr.Markdown(
        "Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
    )
    
    with gr.Row():
        input_asset = gr.Textbox(
            label="Asset Name",
            lines=1,
            placeholder="Enter the name of the trading asset...",
        )
    
    with gr.Row():
        analyze_button = gr.Button("Analyze Sentiment", size="sm")
    
    gr.Examples(
        examples=[
            "Bitcoin",
            "Tesla",
            "Apple",
            "Amazon",
        ],
        inputs=input_asset,
    )
    
    with gr.Row():
        with gr.Column():
            with gr.Blocks():
                gr.Markdown("## Sentiment Summary")
                sentiment_summary = gr.Image(type="filepath", label="Sentiment Analysis Summary")
    
    with gr.Row():
        with gr.Column():
            with gr.Blocks():
                gr.Markdown("## Articles and Sentiment Analysis")
                articles_output = gr.Dataframe(
                    headers=["Sentiment", "Title", "Description", "Date", "Base Score", "Weight", "Total Score"],
                    datatype=["markdown", "html", "markdown", "markdown", "number", "markdown", "markdown"],
                    wrap=False,
                )
    
    analyze_button.click(
        analyze_asset_sentiment,
        inputs=[input_asset],
        outputs=[articles_output, sentiment_summary],
    )

logging.info("Launching Gradio interface")
iface.queue().launch()