File size: 1,577 Bytes
5d52c32
6c226f9
 
 
 
d790c0b
 
88183ad
6c226f9
2362603
9d6fa91
66efbc3
6c226f9
 
 
 
 
 
 
 
 
 
 
5d52c32
3c0cd8e
 
 
6c226f9
3c0cd8e
 
6c226f9
 
ae3ef7d
 
 
 
 
 
 
6c226f9
 
3ce82e9
 
3c0cd8e
 
ae3ef7d
 
3c0cd8e
 
 
 
 
 
3ce82e9
 
6c226f9
 
edce004
6c226f9
 
 
 
ae3ef7d
6c226f9
47407ef
7097513
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import spaces
import torch

import gradio as gr
from transformers import pipeline

import tempfile
import os

MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


@spaces.GPU
def transcribe(inputs, task):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return  text


css = """
footer {
    visibility: hidden;
}
"""

mf_transcribe = gr.Interface(theme="Nymbo/Nymbo_Theme", css=css,
    fn=transcribe,
    inputs=[
        gr.Audio(sources="microphone", type="filepath"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="Whisper Large V3 Turbo: ์Œ์„ฑ์„ ํ…์ŠคํŠธ๋กœ ๋ณ€ํ™˜",

    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources="upload", type="filepath", label="Audio file"),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    title="Whisper Large V3 Turbo: ์Œ์„ฑ์„ ํ…์ŠคํŠธ๋กœ ๋ณ€ํ™˜",
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])

demo.queue().launch(ssr_mode=False)