Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import torch
|
|
3 |
|
4 |
import gradio as gr
|
5 |
from transformers import pipeline
|
6 |
-
|
7 |
import tempfile
|
8 |
import os
|
9 |
|
@@ -20,15 +20,38 @@ pipe = pipeline(
|
|
20 |
device=device,
|
21 |
)
|
22 |
|
|
|
|
|
23 |
|
24 |
@spaces.GPU
|
25 |
-
def
|
26 |
if inputs is None:
|
27 |
raise gr.Error("μ€λμ€ νμΌμ΄ μ μΆλμ§ μμμ΅λλ€! μμ²μ μ μΆνκΈ° μ μ μ€λμ€ νμΌμ μ
λ‘λνκ±°λ λ
Ήμν΄ μ£ΌμΈμ.")
|
28 |
|
|
|
29 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
css = """
|
34 |
footer {
|
@@ -37,25 +60,25 @@ footer {
|
|
37 |
"""
|
38 |
|
39 |
mf_transcribe = gr.Interface(css=css,
|
40 |
-
fn=
|
41 |
inputs=[
|
42 |
gr.Audio(sources="microphone", type="filepath"),
|
43 |
gr.Radio(["transcribe", "translate"], label="μμ
", value="transcribe"),
|
44 |
],
|
45 |
-
outputs="text",
|
46 |
-
title="λ°μμ°κΈ° AI: μμ±μ
|
47 |
-
flagging_mode="never",
|
48 |
)
|
49 |
|
50 |
file_transcribe = gr.Interface(
|
51 |
-
fn=
|
52 |
inputs=[
|
53 |
gr.Audio(sources="upload", type="filepath", label="μ€λμ€ νμΌ"),
|
54 |
gr.Radio(["transcribe", "translate"], label="μμ
", value="transcribe"),
|
55 |
],
|
56 |
-
outputs="text",
|
57 |
-
title="
|
58 |
-
flagging_mode="never",
|
59 |
)
|
60 |
|
61 |
# demo λ³μλ₯Ό Gradio Blocks 컨ν
μ΄λλ‘ μ μ
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
from transformers import pipeline
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
import tempfile
|
8 |
import os
|
9 |
|
|
|
20 |
device=device,
|
21 |
)
|
22 |
|
23 |
+
# Hugging Face InferenceClient μ¬μ©
|
24 |
+
hf_client = InferenceClient("CohereForAI/c4ai-command-r-plus-08-2024", token=os.getenv("HF_TOKEN"))
|
25 |
|
26 |
@spaces.GPU
|
27 |
+
def transcribe_summarize_and_blog(inputs, task):
|
28 |
if inputs is None:
|
29 |
raise gr.Error("μ€λμ€ νμΌμ΄ μ μΆλμ§ μμμ΅λλ€! μμ²μ μ μΆνκΈ° μ μ μ€λμ€ νμΌμ μ
λ‘λνκ±°λ λ
Ήμν΄ μ£ΌμΈμ.")
|
30 |
|
31 |
+
# μμ±μ ν
μ€νΈλ‘ λ³ν
|
32 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
33 |
+
|
34 |
+
# λ³νλ ν
μ€νΈ μμ½ μμ²
|
35 |
+
try:
|
36 |
+
summary = hf_client.summarization(text)
|
37 |
+
except Exception as e:
|
38 |
+
raise gr.Error(f"μμ½ μ€ μ€λ₯κ° λ°μνμ΅λλ€: {e}")
|
39 |
+
|
40 |
+
# λΈλ‘κ·Έ ν¬μ€ν
μμ± μμ²
|
41 |
+
try:
|
42 |
+
blog_post = hf_client.text_generation(
|
43 |
+
prompt=f"λ€μ λ΄μ©μ κΈ°λ°μΌλ‘ λΈλ‘κ·Έ ν¬μ€ν
μ μμ±ν΄ μ£ΌμΈμ:\n{text}",
|
44 |
+
max_length=500,
|
45 |
+
temperature=0.7
|
46 |
+
)
|
47 |
+
except Exception as e:
|
48 |
+
raise gr.Error(f"λΈλ‘κ·Έ κΈ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€: {e}")
|
49 |
+
|
50 |
+
return {
|
51 |
+
"transcribed_text": text,
|
52 |
+
"summary": summary["summary_text"],
|
53 |
+
"blog_post": blog_post["generated_text"]
|
54 |
+
}
|
55 |
|
56 |
css = """
|
57 |
footer {
|
|
|
60 |
"""
|
61 |
|
62 |
mf_transcribe = gr.Interface(css=css,
|
63 |
+
fn=transcribe_summarize_and_blog,
|
64 |
inputs=[
|
65 |
gr.Audio(sources="microphone", type="filepath"),
|
66 |
gr.Radio(["transcribe", "translate"], label="μμ
", value="transcribe"),
|
67 |
],
|
68 |
+
outputs=["text", "text", "text"], # λ³νλ ν
μ€νΈ, μμ½, λΈλ‘κ·Έ κΈ μΆλ ₯
|
69 |
+
title="λ°μμ°κΈ° AI: μμ±μ ν
μ€νΈ λ³ν, μμ½ λ° λΈλ‘κ·Έ ν¬μ€ν
μλ μμ±",
|
70 |
+
flagging_mode="never",
|
71 |
)
|
72 |
|
73 |
file_transcribe = gr.Interface(
|
74 |
+
fn=transcribe_summarize_and_blog,
|
75 |
inputs=[
|
76 |
gr.Audio(sources="upload", type="filepath", label="μ€λμ€ νμΌ"),
|
77 |
gr.Radio(["transcribe", "translate"], label="μμ
", value="transcribe"),
|
78 |
],
|
79 |
+
outputs=["text", "text", "text"], # λ³νλ ν
μ€νΈ, μμ½, λΈλ‘κ·Έ κΈ μΆλ ₯
|
80 |
+
title="λ°μμ°κΈ° AI: μμ±μ ν
μ€νΈ λ³ν, μμ½ λ° λΈλ‘κ·Έ ν¬μ€ν
μλ μμ±",
|
81 |
+
flagging_mode="never",
|
82 |
)
|
83 |
|
84 |
# demo λ³μλ₯Ό Gradio Blocks 컨ν
μ΄λλ‘ μ μ
|