Spaces:
Paused
Paused
| from typing import Tuple, Union | |
| import torch | |
| import torch.nn as nn | |
| class CausalConv3d(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| kernel_size: int = 3, | |
| stride: Union[int, Tuple[int]] = 1, | |
| dilation: int = 1, | |
| groups: int = 1, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.out_channels = out_channels | |
| kernel_size = (kernel_size, kernel_size, kernel_size) | |
| self.time_kernel_size = kernel_size[0] | |
| dilation = (dilation, 1, 1) | |
| height_pad = kernel_size[1] // 2 | |
| width_pad = kernel_size[2] // 2 | |
| padding = (0, height_pad, width_pad) | |
| self.conv = nn.Conv3d( | |
| in_channels, | |
| out_channels, | |
| kernel_size, | |
| stride=stride, | |
| dilation=dilation, | |
| padding=padding, | |
| padding_mode="zeros", | |
| groups=groups, | |
| ) | |
| def forward(self, x, causal: bool = True): | |
| if causal: | |
| first_frame_pad = x[:, :, :1, :, :].repeat( | |
| (1, 1, self.time_kernel_size - 1, 1, 1) | |
| ) | |
| x = torch.concatenate((first_frame_pad, x), dim=2) | |
| else: | |
| first_frame_pad = x[:, :, :1, :, :].repeat( | |
| (1, 1, (self.time_kernel_size - 1) // 2, 1, 1) | |
| ) | |
| last_frame_pad = x[:, :, -1:, :, :].repeat( | |
| (1, 1, (self.time_kernel_size - 1) // 2, 1, 1) | |
| ) | |
| x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2) | |
| x = self.conv(x) | |
| return x | |
| def weight(self): | |
| return self.conv.weight | |