File size: 9,425 Bytes
2409829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use crate::aabb::{Aabb, bounding_box_max_extent, bounding_boxes_overlap};
use crate::epsilons::Epsilons;
use crate::line_segment::{line_segment_intersection, line_segments_intersect};
use crate::line_segment_aabb::line_segment_aabb_intersect;
use crate::math::lerp;
use crate::path_segment::PathSegment;
use glam::DVec2;

#[derive(Clone)]
struct IntersectionSegment {
	seg: PathSegment,
	start_param: f64,
	end_param: f64,
	bounding_box: Aabb,
}

#[inline(never)]
fn subdivide_intersection_segment(int_seg: &IntersectionSegment) -> [IntersectionSegment; 2] {
	let (seg0, seg1) = int_seg.seg.split_at(0.5);
	let mid_param = (int_seg.start_param + int_seg.end_param) / 2.;
	[
		IntersectionSegment {
			seg: seg0,
			start_param: int_seg.start_param,
			end_param: mid_param,
			bounding_box: seg0.bounding_box(),
		},
		IntersectionSegment {
			seg: seg1,
			start_param: mid_param,
			end_param: int_seg.end_param,
			bounding_box: seg1.bounding_box(),
		},
	]
}

#[inline(never)]
fn path_segment_to_line_segment(seg: &PathSegment) -> [DVec2; 2] {
	match seg {
		PathSegment::Line(start, end) => [*start, *end],
		PathSegment::Cubic(start, _, _, end) => [*start, *end],
		PathSegment::Quadratic(start, _, end) => [*start, *end],
		PathSegment::Arc(start, _, _, _, _, _, end) => [*start, *end],
	}
}

#[inline(never)]
fn intersection_segments_overlap(seg0: &IntersectionSegment, seg1: &IntersectionSegment) -> bool {
	match (&seg0.seg, &seg1.seg) {
		(PathSegment::Line(start0, end0), PathSegment::Line(start1, end1)) => {
			line_segments_intersect([*start0, *end0], [*start1, *end1], 1e-6) // TODO: configurable
		}
		(PathSegment::Line(start, end), _) => line_segment_aabb_intersect([*start, *end], &seg1.bounding_box),
		(_, PathSegment::Line(start, end)) => line_segment_aabb_intersect([*start, *end], &seg0.bounding_box),
		_ => bounding_boxes_overlap(&seg0.bounding_box, &seg1.bounding_box),
	}
}

#[inline(never)]
pub fn segments_equal(seg0: &PathSegment, seg1: &PathSegment, point_epsilon: f64) -> bool {
	match (*seg0, *seg1) {
		(PathSegment::Line(start0, end0), PathSegment::Line(start1, end1)) => start0.abs_diff_eq(start1, point_epsilon) && end0.abs_diff_eq(end1, point_epsilon),
		(PathSegment::Cubic(p00, p01, p02, p03), PathSegment::Cubic(p10, p11, p12, p13)) => {
			let start_and_end_equal = p00.abs_diff_eq(p10, point_epsilon) && p03.abs_diff_eq(p13, point_epsilon);

			let parameter_equal = p01.abs_diff_eq(p11, point_epsilon) && p02.abs_diff_eq(p12, point_epsilon);
			let direction1 = seg0.sample_at(0.1);
			let direction2 = seg1.sample_at(0.1);
			let angles_equal = (direction1 - p00).angle_to(direction2 - p00).abs() < point_epsilon * 4.;

			start_and_end_equal && (parameter_equal || angles_equal)
		}
		(PathSegment::Quadratic(p00, p01, p02), PathSegment::Quadratic(p10, p11, p12)) => {
			p00.abs_diff_eq(p10, point_epsilon) && p01.abs_diff_eq(p11, point_epsilon) && p02.abs_diff_eq(p12, point_epsilon)
		}
		(PathSegment::Arc(p00, rx0, ry0, angle0, large_arc0, sweep0, p01), PathSegment::Arc(p10, rx1, ry1, angle1, large_arc1, sweep1, p11)) => {
			p00.abs_diff_eq(p10, point_epsilon) &&
			(rx0 - rx1).abs() < point_epsilon &&
			(ry0 - ry1).abs() < point_epsilon &&
			(angle0 - angle1).abs() < point_epsilon && // TODO: Phi can be anything if rx = ry. Also, handle rotations by Pi/2.
			large_arc0 == large_arc1 &&
			sweep0 == sweep1 &&
			p01.abs_diff_eq(p11, point_epsilon)
		}
		_ => false,
	}
}

pub fn path_segment_intersection(seg0: &PathSegment, seg1: &PathSegment, endpoints: bool, eps: &Epsilons) -> Vec<[f64; 2]> {
	if let (PathSegment::Line(start0, end0), PathSegment::Line(start1, end1)) = (seg0, seg1) {
		if let Some(st) = line_segment_intersection([*start0, *end0], [*start1, *end1], eps.param) {
			if !endpoints && (st.0 < eps.param || st.0 > 1. - eps.param) && (st.1 < eps.param || st.1 > 1. - eps.param) {
				return vec![];
			}
			return vec![st.into()];
		}
	}

	// https://math.stackexchange.com/questions/20321/how-can-i-tell-when-two-cubic-b%C3%A9zier-curves-intersect

	let mut pairs = vec![(
		IntersectionSegment {
			seg: *seg0,
			start_param: 0.,
			end_param: 1.,
			bounding_box: seg0.bounding_box(),
		},
		IntersectionSegment {
			seg: *seg1,
			start_param: 0.,
			end_param: 1.,
			bounding_box: seg1.bounding_box(),
		},
	)];
	let mut next_pairs = Vec::new();

	let mut params = Vec::new();
	let mut subdivided0 = Vec::new();
	let mut subdivided1 = Vec::new();

	// Check if start and end points are on the other bezier curves. If so, add an intersection.

	while !pairs.is_empty() {
		next_pairs.clear();

		if pairs.len() > 1000 {
			return calculate_overlap_intersections(seg0, seg1, eps);
		}

		for (seg0, seg1) in pairs.iter() {
			if segments_equal(&seg0.seg, &seg1.seg, eps.point) {
				// TODO: move this outside of this loop?
				continue; // TODO: what to do?
			}

			let is_linear0 = bounding_box_max_extent(&seg0.bounding_box) <= eps.linear || (seg0.end_param - seg0.start_param).abs() < eps.param;
			let is_linear1 = bounding_box_max_extent(&seg1.bounding_box) <= eps.linear || (seg1.end_param - seg1.start_param).abs() < eps.param;

			if is_linear0 && is_linear1 {
				let line_segment0 = path_segment_to_line_segment(&seg0.seg);
				let line_segment1 = path_segment_to_line_segment(&seg1.seg);
				if let Some(st) = line_segment_intersection(line_segment0, line_segment1, eps.param) {
					params.push([lerp(seg0.start_param, seg0.end_param, st.0), lerp(seg1.start_param, seg1.end_param, st.1)]);
				}
			} else {
				subdivided0.clear();
				subdivided1.clear();
				if is_linear0 {
					subdivided0.push(seg0.clone())
				} else {
					subdivided0.extend_from_slice(&subdivide_intersection_segment(seg0))
				};
				if is_linear1 {
					subdivided1.push(seg1.clone())
				} else {
					subdivided1.extend_from_slice(&subdivide_intersection_segment(seg1))
				};

				for seg0 in &subdivided0 {
					for seg1 in &subdivided1 {
						if intersection_segments_overlap(seg0, seg1) {
							next_pairs.push((seg0.clone(), seg1.clone()));
						}
					}
				}
			}
		}

		std::mem::swap(&mut pairs, &mut next_pairs);
	}

	if !endpoints {
		params.retain(|[s, t]| (s > &eps.param && s < &(1. - eps.param)) || (t > &eps.param && t < &(1. - eps.param)));
	}

	params
}

fn calculate_overlap_intersections(seg0: &PathSegment, seg1: &PathSegment, eps: &Epsilons) -> Vec<[f64; 2]> {
	let start0 = seg0.start();
	let end0 = seg0.end();
	let start1 = seg1.start();
	let end1 = seg1.end();

	let mut intersections = Vec::new();

	// Check start0 against seg1
	if let Some(t1) = find_point_on_segment(seg1, start0, eps) {
		intersections.push([0., t1]);
	}

	// Check end0 against seg1
	if let Some(t1) = find_point_on_segment(seg1, end0, eps) {
		intersections.push([1., t1]);
	}

	// Check start1 against seg0
	if let Some(t0) = find_point_on_segment(seg0, start1, eps) {
		intersections.push([t0, 0.]);
	}

	// Check end1 against seg0
	if let Some(t0) = find_point_on_segment(seg0, end1, eps) {
		intersections.push([t0, 1.]);
	}

	// Remove duplicates and sort intersections
	intersections.sort_unstable_by(|a, b| a[0].partial_cmp(&b[0]).unwrap());
	intersections.dedup_by(|a, b| DVec2::from(*a).abs_diff_eq(DVec2::from(*b), eps.param));

	// Handle special cases
	if intersections.is_empty() {
		// Check if segments are identical
		if (start0.abs_diff_eq(start1, eps.point)) && end0.abs_diff_eq(end1, eps.point) {
			return vec![[0., 0.], [1., 1.]];
		}
	} else if intersections.len() > 2 {
		// Keep only the first and last intersection points
		intersections = vec![intersections[0], intersections[intersections.len() - 1]];
	}

	intersections
}

fn find_point_on_segment(seg: &PathSegment, point: DVec2, eps: &Epsilons) -> Option<f64> {
	let start = 0.;
	let end = 1.;
	let mut t = 0.5;

	for _ in 0..32 {
		// Limit iterations to prevent infinite loops
		let current_point = seg.sample_at(t);

		if current_point.abs_diff_eq(point, eps.point) {
			return Some(t);
		}

		let start_point = seg.sample_at(start);
		let end_point = seg.sample_at(end);

		let dist_start = (point - start_point).length_squared();
		let dist_end = (point - end_point).length_squared();
		let dist_current = (point - current_point).length_squared();

		if dist_current < dist_start && dist_current < dist_end {
			return Some(t);
		}

		if dist_start < dist_end {
			t = (start + t) / 2.;
		} else {
			t = (t + end) / 2.;
		}

		if (end - start) < eps.param {
			break;
		}
	}

	None
}

#[cfg(test)]
mod test {
	use super::*;
	use glam::DVec2;

	#[test]
	fn intersect_cubic_slow_first() {
		path_segment_intersection(&a(), &b(), true, &crate::EPS);
	}
	#[test]
	fn intersect_cubic_slow_second() {
		path_segment_intersection(&c(), &d(), true, &crate::EPS);
	}

	fn a() -> PathSegment {
		PathSegment::Cubic(
			DVec2::new(458.37027, 572.165771),
			DVec2::new(428.525848, 486.720093),
			DVec2::new(368.618805, 467.485992),
			DVec2::new(273., 476.),
		)
	}
	fn b() -> PathSegment {
		PathSegment::Cubic(DVec2::new(273., 476.), DVec2::new(419., 463.), DVec2::new(481.741198, 514.692273), DVec2::new(481.333333, 768.))
	}
	fn c() -> PathSegment {
		PathSegment::Cubic(DVec2::new(273., 476.), DVec2::new(107.564178, 490.730591), DVec2::new(161.737915, 383.575775), DVec2::new(0., 340.))
	}
	fn d() -> PathSegment {
		PathSegment::Cubic(DVec2::new(0., 340.), DVec2::new(161.737914, 383.575765), DVec2::new(107.564182, 490.730587), DVec2::new(273., 476.))
	}
}