File size: 9,425 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
use crate::aabb::{Aabb, bounding_box_max_extent, bounding_boxes_overlap};
use crate::epsilons::Epsilons;
use crate::line_segment::{line_segment_intersection, line_segments_intersect};
use crate::line_segment_aabb::line_segment_aabb_intersect;
use crate::math::lerp;
use crate::path_segment::PathSegment;
use glam::DVec2;
#[derive(Clone)]
struct IntersectionSegment {
seg: PathSegment,
start_param: f64,
end_param: f64,
bounding_box: Aabb,
}
#[inline(never)]
fn subdivide_intersection_segment(int_seg: &IntersectionSegment) -> [IntersectionSegment; 2] {
let (seg0, seg1) = int_seg.seg.split_at(0.5);
let mid_param = (int_seg.start_param + int_seg.end_param) / 2.;
[
IntersectionSegment {
seg: seg0,
start_param: int_seg.start_param,
end_param: mid_param,
bounding_box: seg0.bounding_box(),
},
IntersectionSegment {
seg: seg1,
start_param: mid_param,
end_param: int_seg.end_param,
bounding_box: seg1.bounding_box(),
},
]
}
#[inline(never)]
fn path_segment_to_line_segment(seg: &PathSegment) -> [DVec2; 2] {
match seg {
PathSegment::Line(start, end) => [*start, *end],
PathSegment::Cubic(start, _, _, end) => [*start, *end],
PathSegment::Quadratic(start, _, end) => [*start, *end],
PathSegment::Arc(start, _, _, _, _, _, end) => [*start, *end],
}
}
#[inline(never)]
fn intersection_segments_overlap(seg0: &IntersectionSegment, seg1: &IntersectionSegment) -> bool {
match (&seg0.seg, &seg1.seg) {
(PathSegment::Line(start0, end0), PathSegment::Line(start1, end1)) => {
line_segments_intersect([*start0, *end0], [*start1, *end1], 1e-6) // TODO: configurable
}
(PathSegment::Line(start, end), _) => line_segment_aabb_intersect([*start, *end], &seg1.bounding_box),
(_, PathSegment::Line(start, end)) => line_segment_aabb_intersect([*start, *end], &seg0.bounding_box),
_ => bounding_boxes_overlap(&seg0.bounding_box, &seg1.bounding_box),
}
}
#[inline(never)]
pub fn segments_equal(seg0: &PathSegment, seg1: &PathSegment, point_epsilon: f64) -> bool {
match (*seg0, *seg1) {
(PathSegment::Line(start0, end0), PathSegment::Line(start1, end1)) => start0.abs_diff_eq(start1, point_epsilon) && end0.abs_diff_eq(end1, point_epsilon),
(PathSegment::Cubic(p00, p01, p02, p03), PathSegment::Cubic(p10, p11, p12, p13)) => {
let start_and_end_equal = p00.abs_diff_eq(p10, point_epsilon) && p03.abs_diff_eq(p13, point_epsilon);
let parameter_equal = p01.abs_diff_eq(p11, point_epsilon) && p02.abs_diff_eq(p12, point_epsilon);
let direction1 = seg0.sample_at(0.1);
let direction2 = seg1.sample_at(0.1);
let angles_equal = (direction1 - p00).angle_to(direction2 - p00).abs() < point_epsilon * 4.;
start_and_end_equal && (parameter_equal || angles_equal)
}
(PathSegment::Quadratic(p00, p01, p02), PathSegment::Quadratic(p10, p11, p12)) => {
p00.abs_diff_eq(p10, point_epsilon) && p01.abs_diff_eq(p11, point_epsilon) && p02.abs_diff_eq(p12, point_epsilon)
}
(PathSegment::Arc(p00, rx0, ry0, angle0, large_arc0, sweep0, p01), PathSegment::Arc(p10, rx1, ry1, angle1, large_arc1, sweep1, p11)) => {
p00.abs_diff_eq(p10, point_epsilon) &&
(rx0 - rx1).abs() < point_epsilon &&
(ry0 - ry1).abs() < point_epsilon &&
(angle0 - angle1).abs() < point_epsilon && // TODO: Phi can be anything if rx = ry. Also, handle rotations by Pi/2.
large_arc0 == large_arc1 &&
sweep0 == sweep1 &&
p01.abs_diff_eq(p11, point_epsilon)
}
_ => false,
}
}
pub fn path_segment_intersection(seg0: &PathSegment, seg1: &PathSegment, endpoints: bool, eps: &Epsilons) -> Vec<[f64; 2]> {
if let (PathSegment::Line(start0, end0), PathSegment::Line(start1, end1)) = (seg0, seg1) {
if let Some(st) = line_segment_intersection([*start0, *end0], [*start1, *end1], eps.param) {
if !endpoints && (st.0 < eps.param || st.0 > 1. - eps.param) && (st.1 < eps.param || st.1 > 1. - eps.param) {
return vec![];
}
return vec![st.into()];
}
}
// https://math.stackexchange.com/questions/20321/how-can-i-tell-when-two-cubic-b%C3%A9zier-curves-intersect
let mut pairs = vec![(
IntersectionSegment {
seg: *seg0,
start_param: 0.,
end_param: 1.,
bounding_box: seg0.bounding_box(),
},
IntersectionSegment {
seg: *seg1,
start_param: 0.,
end_param: 1.,
bounding_box: seg1.bounding_box(),
},
)];
let mut next_pairs = Vec::new();
let mut params = Vec::new();
let mut subdivided0 = Vec::new();
let mut subdivided1 = Vec::new();
// Check if start and end points are on the other bezier curves. If so, add an intersection.
while !pairs.is_empty() {
next_pairs.clear();
if pairs.len() > 1000 {
return calculate_overlap_intersections(seg0, seg1, eps);
}
for (seg0, seg1) in pairs.iter() {
if segments_equal(&seg0.seg, &seg1.seg, eps.point) {
// TODO: move this outside of this loop?
continue; // TODO: what to do?
}
let is_linear0 = bounding_box_max_extent(&seg0.bounding_box) <= eps.linear || (seg0.end_param - seg0.start_param).abs() < eps.param;
let is_linear1 = bounding_box_max_extent(&seg1.bounding_box) <= eps.linear || (seg1.end_param - seg1.start_param).abs() < eps.param;
if is_linear0 && is_linear1 {
let line_segment0 = path_segment_to_line_segment(&seg0.seg);
let line_segment1 = path_segment_to_line_segment(&seg1.seg);
if let Some(st) = line_segment_intersection(line_segment0, line_segment1, eps.param) {
params.push([lerp(seg0.start_param, seg0.end_param, st.0), lerp(seg1.start_param, seg1.end_param, st.1)]);
}
} else {
subdivided0.clear();
subdivided1.clear();
if is_linear0 {
subdivided0.push(seg0.clone())
} else {
subdivided0.extend_from_slice(&subdivide_intersection_segment(seg0))
};
if is_linear1 {
subdivided1.push(seg1.clone())
} else {
subdivided1.extend_from_slice(&subdivide_intersection_segment(seg1))
};
for seg0 in &subdivided0 {
for seg1 in &subdivided1 {
if intersection_segments_overlap(seg0, seg1) {
next_pairs.push((seg0.clone(), seg1.clone()));
}
}
}
}
}
std::mem::swap(&mut pairs, &mut next_pairs);
}
if !endpoints {
params.retain(|[s, t]| (s > &eps.param && s < &(1. - eps.param)) || (t > &eps.param && t < &(1. - eps.param)));
}
params
}
fn calculate_overlap_intersections(seg0: &PathSegment, seg1: &PathSegment, eps: &Epsilons) -> Vec<[f64; 2]> {
let start0 = seg0.start();
let end0 = seg0.end();
let start1 = seg1.start();
let end1 = seg1.end();
let mut intersections = Vec::new();
// Check start0 against seg1
if let Some(t1) = find_point_on_segment(seg1, start0, eps) {
intersections.push([0., t1]);
}
// Check end0 against seg1
if let Some(t1) = find_point_on_segment(seg1, end0, eps) {
intersections.push([1., t1]);
}
// Check start1 against seg0
if let Some(t0) = find_point_on_segment(seg0, start1, eps) {
intersections.push([t0, 0.]);
}
// Check end1 against seg0
if let Some(t0) = find_point_on_segment(seg0, end1, eps) {
intersections.push([t0, 1.]);
}
// Remove duplicates and sort intersections
intersections.sort_unstable_by(|a, b| a[0].partial_cmp(&b[0]).unwrap());
intersections.dedup_by(|a, b| DVec2::from(*a).abs_diff_eq(DVec2::from(*b), eps.param));
// Handle special cases
if intersections.is_empty() {
// Check if segments are identical
if (start0.abs_diff_eq(start1, eps.point)) && end0.abs_diff_eq(end1, eps.point) {
return vec![[0., 0.], [1., 1.]];
}
} else if intersections.len() > 2 {
// Keep only the first and last intersection points
intersections = vec![intersections[0], intersections[intersections.len() - 1]];
}
intersections
}
fn find_point_on_segment(seg: &PathSegment, point: DVec2, eps: &Epsilons) -> Option<f64> {
let start = 0.;
let end = 1.;
let mut t = 0.5;
for _ in 0..32 {
// Limit iterations to prevent infinite loops
let current_point = seg.sample_at(t);
if current_point.abs_diff_eq(point, eps.point) {
return Some(t);
}
let start_point = seg.sample_at(start);
let end_point = seg.sample_at(end);
let dist_start = (point - start_point).length_squared();
let dist_end = (point - end_point).length_squared();
let dist_current = (point - current_point).length_squared();
if dist_current < dist_start && dist_current < dist_end {
return Some(t);
}
if dist_start < dist_end {
t = (start + t) / 2.;
} else {
t = (t + end) / 2.;
}
if (end - start) < eps.param {
break;
}
}
None
}
#[cfg(test)]
mod test {
use super::*;
use glam::DVec2;
#[test]
fn intersect_cubic_slow_first() {
path_segment_intersection(&a(), &b(), true, &crate::EPS);
}
#[test]
fn intersect_cubic_slow_second() {
path_segment_intersection(&c(), &d(), true, &crate::EPS);
}
fn a() -> PathSegment {
PathSegment::Cubic(
DVec2::new(458.37027, 572.165771),
DVec2::new(428.525848, 486.720093),
DVec2::new(368.618805, 467.485992),
DVec2::new(273., 476.),
)
}
fn b() -> PathSegment {
PathSegment::Cubic(DVec2::new(273., 476.), DVec2::new(419., 463.), DVec2::new(481.741198, 514.692273), DVec2::new(481.333333, 768.))
}
fn c() -> PathSegment {
PathSegment::Cubic(DVec2::new(273., 476.), DVec2::new(107.564178, 490.730591), DVec2::new(161.737915, 383.575775), DVec2::new(0., 340.))
}
fn d() -> PathSegment {
PathSegment::Cubic(DVec2::new(0., 340.), DVec2::new(161.737914, 383.575765), DVec2::new(107.564182, 490.730587), DVec2::new(273., 476.))
}
}
|