File size: 23,213 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
//! Defines the `PathSegment` enum and related functionality for representing and
//! manipulating path segments in 2D space.
//!
//! This module provides implementations for various types of path segments including
//! lines, cubic and quadratic Bézier curves, and elliptical arcs. It also includes
//! utility functions for operations such as bounding box calculation, segment splitting,
//! and arc-to-cubic conversion.
//!
//! The implementations in this module closely follow the SVG path specification,
//! making it suitable for use in vector graphics applications.
use crate::EPS;
use crate::aabb::{Aabb, bounding_box_around_point, expand_bounding_box, extend_bounding_box, merge_bounding_boxes};
use crate::math::{lerp, vector_angle};
use glam::{DMat2, DMat3, DVec2};
use std::f64::consts::{PI, TAU};
/// Represents a segment of a path in a 2D space, based on the SVG path specification.
///
/// This enum closely follows the path segment types defined in the SVG 2 specification.
/// For more details, see: <https://www.w3.org/TR/SVG2/paths.html>
///
/// Each variant of this enum corresponds to a different type of path segment:
/// - Line: A straight line between two points.
/// - Cubic: A cubic Bézier curve.
/// - Quadratic: A quadratic Bézier curve.
/// - Arc: An elliptical arc.
///
/// # Examples
///
/// Creating a line segment:
/// ```
/// use path_bool::PathSegment;
/// use glam::DVec2;
///
/// let line = PathSegment::Line(DVec2::new(0., 0.), DVec2::new(1., 1.));
/// ```
///
/// Creating a cubic Bézier curve:
/// ```
/// use path_bool::PathSegment;
/// use glam::DVec2;
///
/// let cubic = PathSegment::Cubic(
/// DVec2::new(0., 0.),
/// DVec2::new(1., 0.),
/// DVec2::new(1., 1.),
/// DVec2::new(2., 1.)
/// );
/// ```
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum PathSegment {
/// A line segment from the first point to the second.
/// Corresponds to the SVG "L" command.
Line(DVec2, DVec2),
/// A cubic Bézier curve with start point, two control points, and end point.
/// Corresponds to the SVG "C" command.
Cubic(DVec2, DVec2, DVec2, DVec2),
/// A quadratic Bézier curve with start point, control point, and end point.
/// Corresponds to the SVG "Q" command.
Quadratic(DVec2, DVec2, DVec2),
/// An elliptical arc.
/// Corresponds to the SVG "A" command.
///
/// Parameters:
/// - Start point
/// - X-axis radius
/// - Y-axis radius
/// - X-axis rotation (in radians)
/// - Large arc flag (true if the arc should be greater than or equal to 180 degrees)
/// - Sweep flag (true if the arc should be drawn in a "positive-angle" direction)
/// - End point
Arc(DVec2, f64, f64, f64, bool, bool, DVec2),
}
impl PathSegment {
/// Calculates the angle of the tangent at the start point of the segment.
///
/// This method computes the angle (in radians) of the tangent vector at the
/// beginning of the path segment. The angle is measured clockwise
/// from the positive x-axis.
///
/// # Returns
///
/// A float representing the angle in radians, normalized to the range [0, 2π).
///
/// # Examples
///
/// ```
/// use path_bool::PathSegment;
/// use glam::DVec2;
/// use std::f64::consts::{TAU, FRAC_PI_4};
///
/// let line = PathSegment::Line(DVec2::new(0., 0.), DVec2::new(1., 1.));
/// assert_eq!(line.start_angle(), TAU - (FRAC_PI_4));
/// ```
pub fn start_angle(&self) -> f64 {
let angle = match *self {
PathSegment::Line(start, end) => (end - start).angle_to(DVec2::X),
PathSegment::Cubic(start, control1, control2, _) => {
let diff = control1 - start;
if diff.abs_diff_eq(DVec2::ZERO, EPS.point) {
// if this diff were empty too, the segments would have been converted to a line
(control2 - start).angle_to(DVec2::X)
} else {
diff.angle_to(DVec2::X)
}
}
// Apply same logic as for cubic bezier
PathSegment::Quadratic(start, control, _) => (control - start).to_angle(),
PathSegment::Arc(..) => self.arc_segment_to_cubics(0.001)[0].start_angle(),
};
use std::f64::consts::TAU;
(angle + TAU) % TAU
}
/// Computes the curvature at the start point of the segment.
///
/// The curvature is a measure of how sharply a curve bends. A straight line
/// has a curvature of 0, while a tight curve has a higher curvature value.
///
/// # Returns
///
/// A float representing the curvature. Positive values indicate a left
/// curve, while negative values indicate a right curve.
///
/// # Examples
///
/// ```
/// use path_bool::PathSegment;
/// use glam::DVec2;
///
/// let line = PathSegment::Line(DVec2::new(0., 0.), DVec2::new(1., 1.));
/// assert_eq!(line.start_curvature(), 0.);
///
/// let curve = PathSegment::Cubic(
/// DVec2::new(0., 0.),
/// DVec2::new(0., 1.),
/// DVec2::new(1., 1.),
/// DVec2::new(1., 0.)
/// );
/// assert!(curve.start_curvature() < 0.);
/// ```
pub fn start_curvature(&self) -> f64 {
match *self {
PathSegment::Line(_, _) => 0.,
PathSegment::Cubic(start, control1, control2, _) => {
let a = control1 - start;
let a = 3. * a;
let b = start - 2. * control1 + control2;
let b = 6. * b;
let numerator = a.x * b.y - a.y * b.x;
let denominator = a.length_squared() * a.length();
if denominator == 0. { 0. } else { numerator / denominator }
}
PathSegment::Quadratic(start, control, end) => {
// First derivative
let a = 2. * (control - start);
// Second derivative
let b = 2. * (start - 2. * control + end);
let numerator = a.x * b.y - a.y * b.x;
let denominator = a.length_squared() * a.length();
if denominator == 0. { 0. } else { numerator / denominator }
}
PathSegment::Arc(..) => self.arc_segment_to_cubics(0.001)[0].start_curvature(),
}
}
/// Converts the segment to a cubic Bézier curve representation.
///
/// This method provides a uniform representation of all segment types as
/// cubic Bézier curves. For segments that are not naturally cubic Bézier
/// curves (like lines or quadratic Bézier curves), an equivalent cubic
/// Bézier representation is computed.
///
/// # Returns
///
/// An array of four `DVec2` points representing the cubic Bézier curve:
/// [start point, first control point, second control point, end point]
///
/// # Examples
///
/// ```
/// use path_bool::PathSegment;
/// use glam::DVec2;
///
/// let line = PathSegment::Line(DVec2::new(0., 0.), DVec2::new(1., 1.));
/// let cubic = line.to_cubic();
/// assert_eq!(cubic[0], DVec2::new(0., 0.));
/// assert_eq!(cubic[3], DVec2::new(1., 1.));
/// ```
///
/// # Panics
///
/// This method is not implemented for `PathSegment::Arc`. Attempting to call
/// `to_cubic()` on an `Arc` segment will result in a panic.
pub fn to_cubic(&self) -> [DVec2; 4] {
match *self {
PathSegment::Line(start, end) => [start, start, end, end],
PathSegment::Cubic(s, c1, c2, e) => [s, c1, c2, e],
PathSegment::Quadratic(start, control, end) => {
// C0 = Q0
// C1 = Q0 + (2/3) (Q1 - Q0)
// C2 = Q2 + (2/3) (Q1 - Q2)
// C3 = Q2
let d1 = control - start;
let d2 = control - end;
[start, start + (2. / 3.) * d1, end + (2. / 3.) * d2, end]
}
PathSegment::Arc(..) => unimplemented!(),
}
}
#[must_use]
/// Retrieves the start point of a path segment.
pub fn start(&self) -> DVec2 {
match self {
PathSegment::Line(start, _) => *start,
PathSegment::Cubic(start, _, _, _) => *start,
PathSegment::Quadratic(start, _, _) => *start,
PathSegment::Arc(start, _, _, _, _, _, _) => *start,
}
}
#[must_use]
/// Retrieves the end point of a path segment.
pub fn end(&self) -> DVec2 {
match self {
PathSegment::Line(_, end) => *end,
PathSegment::Cubic(_, _, _, end) => *end,
PathSegment::Quadratic(_, _, end) => *end,
PathSegment::Arc(_, _, _, _, _, _, end) => *end,
}
}
#[must_use]
/// Reverses the direction of the path segment.
///
/// This method creates a new `PathSegment` that represents the same geometric shape
/// but in the opposite direction.
///
/// # Examples
///
/// ```
/// use path_bool::PathSegment;
/// use glam::DVec2;
///
/// let line = PathSegment::Line(DVec2::new(0., 0.), DVec2::new(1., 1.));
/// let reversed = line.reverse();
/// assert_eq!(reversed.start(), DVec2::new(1., 1.));
/// assert_eq!(reversed.end(), DVec2::new(0., 0.));
/// ```
pub fn reverse(&self) -> PathSegment {
match *self {
PathSegment::Line(start, end) => PathSegment::Line(end, start),
PathSegment::Cubic(p1, p2, p3, p4) => PathSegment::Cubic(p4, p3, p2, p1),
PathSegment::Quadratic(p1, p2, p3) => PathSegment::Quadratic(p3, p2, p1),
PathSegment::Arc(start, rx, ry, phi, fa, fs, end) => PathSegment::Arc(end, rx, ry, phi, fa, !fs, start),
}
}
#[must_use]
/// Converts an arc segment to its center parameterization.
///
/// This method is only meaningful for `Arc` segments. For other segment types,
/// it returns `None`.
///
/// # Returns
///
/// An `Option` containing `PathArcSegmentCenterParametrization` if the segment
/// is an `Arc`, or `None` otherwise.
pub fn arc_segment_to_center(&self) -> Option<PathArcSegmentCenterParametrization> {
if let PathSegment::Arc(xy1, rx, ry, phi, fa, fs, xy2) = *self {
if rx == 0. || ry == 0. {
return None;
}
let rotation_matrix = DMat2::from_angle(-phi.to_radians());
let xy1_prime = rotation_matrix * (xy1 - xy2) * 0.5;
let mut rx2 = rx * rx;
let mut ry2 = ry * ry;
let x1_prime2 = xy1_prime.x * xy1_prime.x;
let y1_prime2 = xy1_prime.y * xy1_prime.y;
let mut rx = rx.abs();
let mut ry = ry.abs();
let lambda = x1_prime2 / rx2 + y1_prime2 / ry2 + 1e-12;
if lambda > 1. {
let lambda_sqrt = lambda.sqrt();
rx *= lambda_sqrt;
ry *= lambda_sqrt;
let lambda_abs = lambda.abs();
rx2 *= lambda_abs;
ry2 *= lambda_abs;
}
let sign = if fa == fs { -1. } else { 1. };
let multiplier = ((rx2 * ry2 - rx2 * y1_prime2 - ry2 * x1_prime2) / (rx2 * y1_prime2 + ry2 * x1_prime2)).sqrt();
let cx_prime = sign * multiplier * ((rx * xy1_prime.y) / ry);
let cy_prime = sign * multiplier * ((-ry * xy1_prime.x) / rx);
let cxy = rotation_matrix.transpose() * DVec2::new(cx_prime, cy_prime) + (xy1 + xy2) * 0.5;
let vec1 = DVec2::new((xy1_prime.x - cx_prime) / rx, (xy1_prime.y - cy_prime) / ry);
let theta1 = vector_angle(DVec2::new(1., 0.), vec1);
let mut delta_theta = vector_angle(vec1, DVec2::new((-xy1_prime.x - cx_prime) / rx, (-xy1_prime.y - cy_prime) / ry));
if !fs && delta_theta > 0. {
delta_theta -= TAU;
} else if fs && delta_theta < 0. {
delta_theta += TAU;
}
Some(PathArcSegmentCenterParametrization {
center: cxy,
theta1,
delta_theta,
rx,
ry,
phi,
})
} else {
None
}
}
#[must_use]
/// Samples a point on the path segment at a given parameter value.
///
/// # Arguments
///
/// * `t` - A value between 0. and 1. representing the position along the segment.
///
/// # Examples
///
/// ```
/// use path_bool::PathSegment;
/// use glam::DVec2;
///
/// let line = PathSegment::Line(DVec2::new(0., 0.), DVec2::new(2., 2.));
/// assert_eq!(line.sample_at(0.5), DVec2::new(1., 1.));
/// ```
pub fn sample_at(&self, t: f64) -> DVec2 {
match *self {
PathSegment::Line(start, end) => start.lerp(end, t),
PathSegment::Cubic(p1, p2, p3, p4) => {
let p01 = p1.lerp(p2, t);
let p12 = p2.lerp(p3, t);
let p23 = p3.lerp(p4, t);
let p012 = p01.lerp(p12, t);
let p123 = p12.lerp(p23, t);
p012.lerp(p123, t)
}
PathSegment::Quadratic(p1, p2, p3) => {
let p01 = p1.lerp(p2, t);
let p12 = p2.lerp(p3, t);
p01.lerp(p12, t)
}
PathSegment::Arc(start, rx, ry, phi, _, _, end) => {
if let Some(center_param) = self.arc_segment_to_center() {
let theta = center_param.theta1 + t * center_param.delta_theta;
let p = DVec2::new(rx * theta.cos(), ry * theta.sin());
let rotation_matrix = DMat2::from_angle(phi);
rotation_matrix * p + center_param.center
} else {
start.lerp(end, t)
}
}
}
}
#[must_use]
/// Approximates an arc segment with a series of cubic Bézier curves.
///
/// This method is primarily used for `Arc` segments, converting them into
/// a series of cubic Bézier curves for easier rendering or manipulation.
/// For non-`Arc` segments, it returns a vector containing only the original segment.
///
/// # Arguments
///
/// * `max_delta_theta` - The maximum angle (in radians) that each cubic Bézier
/// curve approximation should span.
///
/// # Returns
///
/// A vector of `PathSegment::Cubic` approximating the original segment.
pub fn arc_segment_to_cubics(&self, max_delta_theta: f64) -> Vec<PathSegment> {
if let PathSegment::Arc(start, rx, ry, phi, _, _, end) = *self {
if let Some(center_param) = self.arc_segment_to_center() {
let count = ((center_param.delta_theta.abs() / max_delta_theta).ceil() as usize).max(1);
let from_unit = DMat3::from_translation(center_param.center) * DMat3::from_angle(phi.to_radians()) * DMat3::from_scale(DVec2::new(rx, ry));
let theta = center_param.delta_theta / count as f64;
let k = (4. / 3.) * (theta / 4.).tan();
let sin_theta = theta.sin();
let cos_theta = theta.cos();
(0..count)
.map(|i| {
let start = DVec2::new(1., 0.);
let control1 = DVec2::new(1., k);
let control2 = DVec2::new(cos_theta + k * sin_theta, sin_theta - k * cos_theta);
let end = DVec2::new(cos_theta, sin_theta);
let matrix = DMat3::from_angle(center_param.theta1 + i as f64 * theta) * from_unit;
let start = (matrix * start.extend(1.)).truncate();
let control1 = (matrix * control1.extend(1.)).truncate();
let control2 = (matrix * control2.extend(1.)).truncate();
let end = (matrix * end.extend(1.)).truncate();
PathSegment::Cubic(start, control1, control2, end)
})
.collect()
} else {
vec![PathSegment::Line(start, end)]
}
} else {
vec![*self]
}
}
}
/// Represents the center parameterization of an elliptical arc.
///
/// This struct is used internally to perform calculations on arc segments.
pub struct PathArcSegmentCenterParametrization {
center: DVec2,
theta1: f64,
delta_theta: f64,
rx: f64,
ry: f64,
phi: f64,
}
/// Converts the center parameterization back to an arc segment.
///
/// # Arguments
///
/// * `start` - Optional start point of the arc. If `None`, the start point is calculated.
/// * `end` - Optional end point of the arc. If `None`, the end point is calculated.
///
/// # Returns
///
/// A `PathSegment::Arc` representing the arc described by this parameterization.
impl PathArcSegmentCenterParametrization {
#[must_use]
pub fn arc_segment_from_center(&self, start: Option<DVec2>, end: Option<DVec2>) -> PathSegment {
let rotation_matrix = DMat2::from_angle(self.phi);
let mut xy1 = rotation_matrix * DVec2::new(self.rx * self.theta1.cos(), self.ry * self.theta1.sin()) + self.center;
let mut xy2 = rotation_matrix * DVec2::new(self.rx * (self.theta1 + self.delta_theta).cos(), self.ry * (self.theta1 + self.delta_theta).sin()) + self.center;
let fa = self.delta_theta.abs() > PI;
let fs = self.delta_theta > 0.;
xy1 = start.unwrap_or(xy1);
xy2 = end.unwrap_or(xy2);
PathSegment::Arc(xy1, self.rx, self.ry, self.phi, fa, fs, xy2)
}
}
/// Evaluates a 1D cubic Bézier curve at a given parameter value.
///
/// # Arguments
///
/// * `p0`, `p1`, `p2`, `p3` - Control points of the cubic Bézier curve.
/// * `t` - Parameter value between 0 and 1.
///
/// # Returns
///
/// The value of the Bézier curve at parameter `t`.
fn eval_cubic_1d(p0: f64, p1: f64, p2: f64, p3: f64, t: f64) -> f64 {
let p01 = lerp(p0, p1, t);
let p12 = lerp(p1, p2, t);
let p23 = lerp(p2, p3, t);
let p012 = lerp(p01, p12, t);
let p123 = lerp(p12, p23, t);
lerp(p012, p123, t)
}
/// Computes the bounding interval of a 1D cubic Bézier curve.
///
/// This function finds the minimum and maximum values of a cubic Bézier curve
/// over the interval [0, 1].
///
/// # Arguments
///
/// * `p0`, `p1`, `p2`, `p3` - Control points of the cubic Bézier curve.
///
/// # Returns
///
/// A tuple `(min, max)` representing the bounding interval.
fn cubic_bounding_interval(p0: f64, p1: f64, p2: f64, p3: f64) -> (f64, f64) {
let mut min = p0.min(p3);
let mut max = p0.max(p3);
let a = 3. * (-p0 + 3. * p1 - 3. * p2 + p3);
let b = 6. * (p0 - 2. * p1 + p2);
let c = 3. * (p1 - p0);
let d = b * b - 4. * a * c;
if d < 0. || a == 0. {
// TODO: if a=0, solve linear
return (min, max);
}
let sqrt_d = d.sqrt();
let t0 = (-b - sqrt_d) / (2. * a);
if 0. < t0 && t0 < 1. {
let x0 = eval_cubic_1d(p0, p1, p2, p3, t0);
min = min.min(x0);
max = max.max(x0);
}
let t1 = (-b + sqrt_d) / (2. * a);
if 0. < t1 && t1 < 1. {
let x1 = eval_cubic_1d(p0, p1, p2, p3, t1);
min = min.min(x1);
max = max.max(x1);
}
(min, max)
}
/// Evaluates a 1D quadratic Bézier curve at a given parameter value.
///
/// # Arguments
///
/// * `p0`, `p1`, `p2` - Control points of the quadratic Bézier curve.
/// * `t` - Parameter value between 0 and 1.
///
/// # Returns
///
/// The value of the Bézier curve at parameter `t`.
fn eval_quadratic_1d(p0: f64, p1: f64, p2: f64, t: f64) -> f64 {
let p01 = lerp(p0, p1, t);
let p12 = lerp(p1, p2, t);
lerp(p01, p12, t)
}
/// Computes the bounding interval of a 1D quadratic Bézier curve.
///
/// This function finds the minimum and maximum values of a quadratic Bézier curve
/// over the interval [0, 1].
///
/// # Arguments
///
/// * `p0`, `p1`, `p2` - Control points of the quadratic Bézier curve.
///
/// # Returns
///
/// A tuple `(min, max)` representing the bounding interval.
fn quadratic_bounding_interval(p0: f64, p1: f64, p2: f64) -> (f64, f64) {
let mut min = p0.min(p2);
let mut max = p0.max(p2);
let denominator = p0 - 2. * p1 + p2;
if denominator == 0. {
return (min, max);
}
let t = (p0 - p1) / denominator;
if (0.0..=1.).contains(&t) {
let x = eval_quadratic_1d(p0, p1, p2, t);
min = min.min(x);
max = max.max(x);
}
(min, max)
}
fn in_interval(x: f64, x0: f64, x1: f64) -> bool {
(x0..=x1).contains(&x)
}
impl PathSegment {
/// Computes the bounding box of the path segment.
///
/// # Returns
///
/// An [`Aabb`] representing the axis-aligned bounding box of the segment.
pub(crate) fn bounding_box(&self) -> Aabb {
match *self {
PathSegment::Line(start, end) => Aabb {
top: start.y.min(end.y),
right: start.x.max(end.x),
bottom: start.y.max(end.y),
left: start.x.min(end.x),
},
PathSegment::Cubic(p1, p2, p3, p4) => {
let (left, right) = cubic_bounding_interval(p1.x, p2.x, p3.x, p4.x);
let (top, bottom) = cubic_bounding_interval(p1.y, p2.y, p3.y, p4.y);
Aabb { top, right, bottom, left }
}
PathSegment::Quadratic(p1, p2, p3) => {
let (left, right) = quadratic_bounding_interval(p1.x, p2.x, p3.x);
let (top, bottom) = quadratic_bounding_interval(p1.y, p2.y, p3.y);
Aabb { top, right, bottom, left }
}
PathSegment::Arc(start, rx, ry, phi, _, _, end) => {
if let Some(center_param) = self.arc_segment_to_center() {
let theta2 = center_param.theta1 + center_param.delta_theta;
let mut bounding_box = extend_bounding_box(Some(bounding_box_around_point(start, 0.)), end);
if phi == 0. || rx == ry {
// TODO: Fix the fact that the following gives false positives, resulting in larger boxes
if in_interval(-PI, center_param.theta1, theta2) || in_interval(PI, center_param.theta1, theta2) {
bounding_box = extend_bounding_box(Some(bounding_box), DVec2::new(center_param.center.x - rx, center_param.center.y));
}
if in_interval(-PI / 2., center_param.theta1, theta2) || in_interval(3. * PI / 2., center_param.theta1, theta2) {
bounding_box = extend_bounding_box(Some(bounding_box), DVec2::new(center_param.center.x, center_param.center.y - ry));
}
if in_interval(0., center_param.theta1, theta2) || in_interval(2. * PI, center_param.theta1, theta2) {
bounding_box = extend_bounding_box(Some(bounding_box), DVec2::new(center_param.center.x + rx, center_param.center.y));
}
if in_interval(PI / 2., center_param.theta1, theta2) || in_interval(5. * PI / 2., center_param.theta1, theta2) {
bounding_box = extend_bounding_box(Some(bounding_box), DVec2::new(center_param.center.x, center_param.center.y + ry));
}
expand_bounding_box(&bounding_box, 1e-11) // TODO: Get rid of expansion
} else {
// TODO: Don't convert to cubics
let cubics = self.arc_segment_to_cubics(PI / 16.);
let mut bounding_box = None;
for cubic_seg in cubics {
bounding_box = Some(merge_bounding_boxes(bounding_box, &cubic_seg.bounding_box()));
}
bounding_box.unwrap_or_else(|| bounding_box_around_point(start, 0.))
}
} else {
extend_bounding_box(Some(bounding_box_around_point(start, 0.)), end)
}
}
}
}
/// Splits the path segment at a given parameter value.
///
/// # Arguments
///
/// * `t` - A value between 0. and 1. representing the split point along the segment.
///
/// # Returns
///
/// A tuple of two `PathSegment`s representing the parts before and after the split point.
///
/// # Examples
///
/// ```
/// use path_bool::PathSegment;
/// use glam::DVec2;
///
/// let line = PathSegment::Line(DVec2::new(0., 0.), DVec2::new(2., 2.));
/// let (first_half, second_half) = line.split_at(0.5);
/// assert_eq!(first_half.end(), DVec2::new(1., 1.));
/// assert_eq!(second_half.start(), DVec2::new(1., 1.));
/// ```
pub fn split_at(&self, t: f64) -> (PathSegment, PathSegment) {
match *self {
PathSegment::Line(start, end) => {
let p = start.lerp(end, t);
(PathSegment::Line(start, p), PathSegment::Line(p, end))
}
PathSegment::Cubic(p0, p1, p2, p3) => {
let p01 = p0.lerp(p1, t);
let p12 = p1.lerp(p2, t);
let p23 = p2.lerp(p3, t);
let p012 = p01.lerp(p12, t);
let p123 = p12.lerp(p23, t);
let p = p012.lerp(p123, t);
(PathSegment::Cubic(p0, p01, p012, p), PathSegment::Cubic(p, p123, p23, p3))
}
PathSegment::Quadratic(p0, p1, p2) => {
let p01 = p0.lerp(p1, t);
let p12 = p1.lerp(p2, t);
let p = p01.lerp(p12, t);
(PathSegment::Quadratic(p0, p01, p), PathSegment::Quadratic(p, p12, p2))
}
PathSegment::Arc(start, _, _, _, _, _, end) => {
if let Some(center_param) = self.arc_segment_to_center() {
let mid_delta_theta = center_param.delta_theta * t;
let seg1 = PathArcSegmentCenterParametrization {
delta_theta: mid_delta_theta,
..center_param
}
.arc_segment_from_center(Some(start), None);
let seg2 = PathArcSegmentCenterParametrization {
theta1: center_param.theta1 + mid_delta_theta,
delta_theta: center_param.delta_theta - mid_delta_theta,
..center_param
}
.arc_segment_from_center(None, Some(end));
(seg1, seg2)
} else {
// https://svgwg.org/svg2-draft/implnote.html#ArcCorrectionOutOfRangeRadii
let p = start.lerp(end, t);
(PathSegment::Line(start, p), PathSegment::Line(p, end))
}
}
}
}
}
|