File size: 62,478 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 |
//! Implements boolean operations on paths using graph-based algorithms.
//!
//! This module uses concepts from graph theory to efficiently perform boolean
//! operations on complex paths. The main algorithms involve creating a graph
//! representation of the paths, simplifying this graph, and then working with
//! its dual graph to determine the result of the boolean operation.
//!
//! ## Graph Minor
//!
//! A graph minor is a simplified version of a graph, obtained by contracting edges
//! (merging connected vertices) and removing isolated vertices. In the context of
//! path boolean operations, we use a graph minor to simplify the initial graph
//! representation of the paths. This simplification involves:
//!
//! 1. Merging collinear segments into single edges.
//! 2. Removing vertices that don't represent significant features (like intersections
//! or endpoints).
//!
//! The resulting graph minor preserves the topological structure of the paths while
//! reducing computational complexity.
//!
//! For more information on graph minors, see:
//! <https://en.wikipedia.org/wiki/Graph_minor>
//!
//! ## Dual Graph
//!
//! The dual graph is a graph derived from another graph (the primal graph). In the
//! context of path boolean operations, we construct the dual graph as follows:
//!
//! 1. Each face (region) in the primal graph becomes a vertex in the dual graph.
//! 2. Each edge in the primal graph becomes an edge in the dual graph, connecting
//! the vertices that represent the faces on either side of the original edge.
//!
//! The dual graph allows us to efficiently determine which regions are inside or
//! outside the original paths, which is crucial for performing boolean operations.
//!
//! For more information on dual graphs, see:
//! <https://en.wikipedia.org/wiki/Dual_graph>
//!
//! ## Algorithm Overview
//!
//! The boolean operation algorithm follows these main steps:
//!
//! 1. Create a graph representation of both input paths (MajorGraph).
//! 2. Simplify this graph to create a graph minor (MinorGraph).
//! 3. Construct the dual graph of the MinorGraph.
//! 4. Use the dual graph to determine which regions should be included in the result,
//! based on the specific boolean operation being performed.
//! 5. Reconstruct the resulting path(s) from the selected regions.
//!
//! This approach allows for efficient and accurate boolean operations, even on
//! complex paths with many intersections or self-intersections.
new_key_type! {
pub struct MajorVertexKey;
pub struct MajorEdgeKey;
pub struct MinorVertexKey;
pub struct MinorEdgeKey;
pub struct DualVertexKey;
pub struct DualEdgeKey;
}
// Copyright 2024 Adam Platkevič <[email protected]>
//
// SPDX-License-Identifier: MIT
use crate::aabb::{Aabb, bounding_box_around_point, bounding_box_max_extent, merge_bounding_boxes};
use crate::epsilons::Epsilons;
use crate::intersection_path_segment::{path_segment_intersection, segments_equal};
use crate::path::Path;
use crate::path_cubic_segment_self_intersection::path_cubic_segment_self_intersection;
use crate::path_segment::PathSegment;
#[cfg(feature = "logging")]
use crate::path_to_path_data;
use crate::quad_tree::QuadTree;
use glam::DVec2;
use slotmap::{SlotMap, new_key_type};
use std::cmp::Ordering;
use std::collections::{HashMap, HashSet, VecDeque};
use std::fmt::Display;
/// Represents the types of boolean operations that can be performed on paths.
#[derive(Debug, Clone, Copy)]
pub enum PathBooleanOperation {
/// Computes the union of two paths.
///
/// The result contains all areas that are inside either path A or path B (or both).
/// This operation is useful for combining shapes or creating complex outlines.
Union,
/// Computes the difference between two paths (A minus B).
///
/// The result contains all areas that are inside path A but not inside path B.
/// This operation is useful for cutting holes or subtracting shapes from each other.
Difference,
/// Computes the intersection of two paths.
///
/// The result contains only the areas that are inside both path A and path B.
/// This operation is useful for finding overlapping regions between shapes.
Intersection,
/// Computes the symmetric difference (exclusive or) of two paths.
///
/// The result contains areas that are inside either path A or path B, but not in both.
/// This operation is useful for creating non-overlapping regions or finding boundaries.
Exclusion,
/// Divides the first path using the second path as a "knife".
///
/// This operation splits path A wherever it intersects with path B, but keeps all
/// parts of path A. It's useful for creating segments or partitioning shapes.
Division,
/// Breaks both paths into separate pieces where they intersect.
///
/// This operation splits both path A and path B at their intersection points,
/// resulting in all possible non-overlapping segments from both paths.
/// It's useful for creating detailed breakdowns of overlapping shapes.
Fracture,
}
/// Specifies how to determine the "inside" of a path for filling.
#[derive(Debug, Clone, Copy)]
pub enum FillRule {
/// A point is inside if a ray from the point to infinity crosses an odd number of path segments.
NonZero,
/// A point is inside if a ray from the point to infinity crosses an even number of path segments.
EvenOdd,
}
const INTERSECTION_TREE_DEPTH: usize = 8;
const POINT_TREE_DEPTH: usize = 8;
pub const EPS: Epsilons = Epsilons {
point: 1e-5,
linear: 1e-4,
param: 1e-8,
};
type MajorGraphEdgeStage1 = (PathSegment, u8);
type MajorGraphEdgeStage2 = (PathSegment, u8, Aabb);
#[derive(Debug, Clone)]
pub struct MajorGraphEdge {
seg: PathSegment,
parent: u8,
incident_vertices: [MajorVertexKey; 2],
direction_flag: Direction,
twin: Option<MajorEdgeKey>,
}
#[derive(Debug, Clone, Default)]
pub struct MajorGraphVertex {
#[cfg_attr(not(feature = "logging"), expect(dead_code))]
pub point: DVec2,
outgoing_edges: Vec<MajorEdgeKey>,
}
/// Represents the initial graph structure used in boolean operations.
///
/// This graph contains all segments from both input paths.
#[derive(Debug, Clone)]
struct MajorGraph {
edges: SlotMap<MajorEdgeKey, MajorGraphEdge>,
vertices: SlotMap<MajorVertexKey, MajorGraphVertex>,
}
#[derive(Debug, Clone, PartialEq)]
struct MinorGraphEdge {
segments: Vec<PathSegment>,
parent: u8,
incident_vertices: [MinorVertexKey; 2],
direction_flag: Direction,
twin: Option<MinorEdgeKey>,
}
impl MinorGraphEdge {
fn start_segment(&self) -> PathSegment {
let segment = self.segments[0];
match self.direction_flag {
Direction::Forward => segment,
Direction::Backwards => segment.reverse(),
}
}
}
// Compares Segments based on their derivative at the start. If the derivative
// is equal, check the curvature instead. This should correctly sort most instances.
fn compare_segments(a: &PathSegment, b: &PathSegment) -> Ordering {
let angle_a = a.start_angle();
let angle_b = b.start_angle();
// Normalize angles to [0, 2π)
let angle_a = (angle_a * 1000.).round() / 1000.;
let angle_b = (angle_b * 1000.).round() / 1000.;
// Compare angles first
match angle_b.partial_cmp(&angle_a) {
Some(Ordering::Equal) => {
// If angles are equal (or very close), compare curvatures
let curvature_a = a.start_curvature();
let curvature_b = b.start_curvature();
curvature_a.partial_cmp(&curvature_b).unwrap_or(Ordering::Equal)
}
Some(ordering) => ordering,
None => Ordering::Equal, // Handle NaN cases
}
}
impl PartialOrd for MinorGraphEdge {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(compare_segments(&self.start_segment(), &other.start_segment()))
}
}
#[derive(Debug, Clone, Default)]
struct MinorGraphVertex {
outgoing_edges: Vec<MinorEdgeKey>,
}
#[derive(Debug, Clone)]
struct MinorGraphCycle {
segments: Vec<PathSegment>,
parent: u8,
direction_flag: Direction,
}
/// Represents a simplified graph structure derived from the MajorGraph.
///
/// This graph combines collinear segments and removes unnecessary vertices.
#[derive(Debug, Clone)]
struct MinorGraph {
edges: SlotMap<MinorEdgeKey, MinorGraphEdge>,
vertices: SlotMap<MinorVertexKey, MinorGraphVertex>,
cycles: Vec<MinorGraphCycle>,
}
#[derive(Debug, Clone, PartialEq)]
struct DualGraphHalfEdge {
segments: Vec<PathSegment>,
parent: u8,
incident_vertex: DualVertexKey,
direction_flag: Direction,
twin: Option<DualEdgeKey>,
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
struct DualGraphVertex {
incident_edges: Vec<DualEdgeKey>,
}
/// Represents a component in the dual graph.
///
/// A component is a connected subset of the dual graph, typically corresponding
/// to a distinct region in the original paths.
#[derive(Debug, Clone)]
struct DualGraphComponent {
edges: Vec<DualEdgeKey>,
vertices: Vec<DualVertexKey>,
outer_face: Option<DualVertexKey>,
}
/// Represents the dual graph of the MinorGraph.
///
/// In this graph, faces of the MinorGraph become vertices, and edges represent
/// adjacency between faces. This structure is crucial for determining the
/// inside/outside regions of the paths.
#[derive(Debug, Clone)]
struct DualGraph {
components: Vec<DualGraphComponent>,
edges: SlotMap<DualEdgeKey, DualGraphHalfEdge>,
vertices: SlotMap<DualVertexKey, DualGraphVertex>,
}
/// Represents the hierarchical nesting of regions in the paths.
///
/// This tree structure captures how different regions of the paths are contained
/// within each other
#[derive(Debug, Clone)]
struct NestingTree {
component: DualGraphComponent,
outgoing_edges: HashMap<DualVertexKey, Vec<NestingTree>>,
}
#[cfg(feature = "logging")]
fn major_graph_to_dot(graph: &MajorGraph) -> String {
let mut dot = String::from("digraph {\n");
for (vertex_key, vertex) in &graph.vertices {
dot.push_str(&format!(" {:?} [label=\"{:.1},{:.1}\"]\n", (vertex_key.0.as_ffi() & 0xFF), vertex.point.x, vertex.point.y));
}
for (_, edge) in &graph.edges {
dot.push_str(&format!(
" {:?} -> {:?}: {:0b}\n",
(edge.incident_vertices[0].0.as_ffi() & 0xFF),
(edge.incident_vertices[1].0.as_ffi() & 0xFF),
edge.parent
));
}
dot.push_str("}\n");
dot
}
#[cfg(feature = "logging")]
fn minor_graph_to_dot(edges: &SlotMap<MinorEdgeKey, MinorGraphEdge>) -> String {
let mut dot = String::from("digraph {\n");
for edge in edges.values() {
dot.push_str(&format!(
" {:?} -> {:?}: {:0b}\n",
(edge.incident_vertices[0].0.as_ffi() & 0xFF),
(edge.incident_vertices[1].0.as_ffi() & 0xFF),
edge.parent
));
}
dot.push_str("}\n");
dot
}
#[cfg(feature = "logging")]
fn dual_graph_to_dot(components: &[DualGraphComponent], edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>) -> String {
let mut dot = String::from("strict graph {\n");
for component in components {
for &edge_key in &component.edges {
let edge = &edges[edge_key];
dot.push_str(&format!(
" {:?} -- {:?}\n",
(edge.incident_vertex.0.as_ffi() & 0xFF),
(edges[edge.twin.unwrap()].incident_vertex.0.as_ffi() & 0xFF)
));
}
}
dot.push_str("}\n");
dot
}
fn segment_to_edge(parent: u8) -> impl Fn(&PathSegment) -> Option<MajorGraphEdgeStage1> {
move |seg| {
if bounding_box_max_extent(&seg.bounding_box()) < EPS.point {
return None;
}
match seg {
// Convert Line Segments expressed as cubic beziers to proper line segments
PathSegment::Cubic(start, _, _, end) => {
let direction = seg.sample_at(0.1);
if (*end - *start).angle_to(direction - *start).abs() < EPS.point * 4. {
Some((PathSegment::Line(*start, *end), parent))
} else {
Some((*seg, parent))
}
}
seg => Some((*seg, parent)),
}
}
}
fn split_at_self_intersections(edges: &mut Vec<MajorGraphEdgeStage1>) {
let mut new_edges = Vec::new();
for (seg, parent) in edges.iter_mut() {
if let PathSegment::Cubic(..) = seg {
if let Some(intersection) = path_cubic_segment_self_intersection(seg) {
let mut intersection = intersection;
if intersection[0] > intersection[1] {
intersection.swap(0, 1);
}
let [t1, t2] = intersection;
if (t1 - t2).abs() < EPS.param {
let (seg1, seg2) = seg.split_at(t1);
*seg = seg1;
new_edges.push((seg2, *parent));
} else {
let (seg1, tmp_seg) = seg.split_at(t1);
let (seg2, seg3) = &tmp_seg.split_at((t2 - t1) / (1. - t1));
*seg = seg1;
new_edges.push((*seg2, *parent));
new_edges.push((*seg3, *parent));
}
}
}
}
edges.extend(new_edges);
}
/// Splits path segments at their intersections with other segments.
///
/// This function performs the following steps:
/// 1. Computes bounding boxes for all input edges.
/// 2. Creates a spatial index (quad tree) of edges for efficient intersection checks.
/// 3. For each edge:
/// a. Finds potential intersecting edges using the spatial index.
/// b. Computes precise intersections with these candidates.
/// c. Records the intersection points as split locations.
/// 4. Splits the original edges at the recorded intersection points.
/// 5. Returns the split edges along with an overall bounding box.
///
/// The function uses an epsilon value to handle floating-point imprecision
/// when determining if intersections occur at endpoints.
///
/// # Arguments
///
/// * `edges` - A slice of initial path segments (MajorGraphEdgeStage1).
///
/// # Returns
///
/// A tuple containing:
/// * A vector of split edges (MajorGraphEdgeStage2).
/// * An optional overall bounding box (AaBb) for all edges.
fn split_at_intersections(edges: &[MajorGraphEdgeStage1]) -> (Vec<MajorGraphEdgeStage2>, Option<Aabb>) {
// Step 1: Add bounding boxes to edges
let with_bounding_box: Vec<MajorGraphEdgeStage2> = edges.iter().map(|(seg, parent)| (*seg, *parent, seg.bounding_box())).collect();
// Step 2: Calculate total bounding box
let total_bounding_box = with_bounding_box.iter().fold(None, |acc, (_, _, bb)| Some(merge_bounding_boxes(acc, bb)));
let total_bounding_box = match total_bounding_box {
Some(bb) => bb,
None => return (Vec::new(), None),
};
// Step 3: Create edge tree for efficient intersection checks
let mut edge_tree = QuadTree::new(total_bounding_box, INTERSECTION_TREE_DEPTH, 8);
let mut splits_per_edge: HashMap<usize, Vec<f64>> = HashMap::new();
fn add_split(splits_per_edge: &mut HashMap<usize, Vec<f64>>, i: usize, t: f64) {
splits_per_edge.entry(i).or_default().push(t);
}
// Step 4: Find intersections and record split points
for (i, edge) in with_bounding_box.iter().enumerate() {
let candidates = edge_tree.find(&edge.2);
for &j in &candidates {
let candidate: &(PathSegment, u8) = &edges[j];
let include_endpoints = edge.1 != candidate.1 || !(candidate.0.end().abs_diff_eq(edge.0.start(), EPS.point) || candidate.0.start().abs_diff_eq(edge.0.end(), EPS.point));
let intersection = path_segment_intersection(&edge.0, &candidate.0, include_endpoints, &EPS);
for [t0, t1] in intersection {
add_split(&mut splits_per_edge, i, t0);
add_split(&mut splits_per_edge, j, t1);
}
}
edge_tree.insert(edge.2, i);
}
// Step 5: Apply splits to create new edges
let mut new_edges = Vec::new();
for (i, (seg, parent, _)) in with_bounding_box.into_iter().enumerate() {
if let Some(splits) = splits_per_edge.get(&i) {
let mut splits = splits.clone();
splits.sort_by(|a, b| a.partial_cmp(b).unwrap());
let mut tmp_seg = seg;
let mut prev_t = 0.;
for &t in splits.iter() {
if t > 1. - EPS.param {
break;
}
let tt = (t - prev_t) / (1. - prev_t);
prev_t = t;
if tt < EPS.param {
continue;
}
if tt > 1. - EPS.param {
continue;
}
let (seg1, seg2) = tmp_seg.split_at(tt);
new_edges.push((seg1, parent, seg1.bounding_box()));
tmp_seg = seg2;
}
new_edges.push((tmp_seg, parent, tmp_seg.bounding_box()));
} else {
new_edges.push((seg, parent, seg.bounding_box()));
}
}
(new_edges, Some(total_bounding_box))
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Direction {
Forward,
Backwards,
}
impl std::ops::Neg for Direction {
type Output = Self;
fn neg(self) -> Self::Output {
match self {
Self::Forward => Self::Backwards,
Self::Backwards => Self::Forward,
}
}
}
impl std::ops::Not for Direction {
type Output = Self;
fn not(self) -> Self::Output {
match self {
Self::Forward => Self::Backwards,
Self::Backwards => Self::Forward,
}
}
}
impl Direction {
pub fn forward(self) -> bool {
self == Self::Forward
}
}
// TODO:(@TrueDoctor) Optimize this by rounding each vertex up and down and then inserting them in a hashmap. This should remove the need for bbox calculations and the quad tree
fn find_vertices(edges: &[MajorGraphEdgeStage2], bounding_box: Aabb) -> MajorGraph {
let mut vertex_tree = QuadTree::new(bounding_box, POINT_TREE_DEPTH, 8);
let mut graph = MajorGraph {
edges: SlotMap::with_key(),
vertices: SlotMap::with_key(),
};
let mut parents: HashMap<MajorEdgeKey, u8> = HashMap::new();
let mut vertex_pair_id_to_edges: HashMap<_, Vec<(MajorGraphEdgeStage2, MajorEdgeKey, MajorEdgeKey)>> = HashMap::new();
for (seg, parent, bounding_box) in edges {
let mut get_vertex = |point: DVec2| -> MajorVertexKey {
let box_around_point = bounding_box_around_point(point, EPS.point);
if let Some(&existing_vertex) = vertex_tree.find(&box_around_point).iter().next() {
existing_vertex
} else {
let vertex_key = graph.vertices.insert(MajorGraphVertex { point, outgoing_edges: Vec::new() });
vertex_tree.insert(box_around_point, vertex_key);
vertex_key
}
};
let start_vertex = get_vertex(seg.start());
let end_vertex = get_vertex(seg.end());
if start_vertex == end_vertex {
match seg {
PathSegment::Line(..) => continue,
PathSegment::Cubic(_, c1, c2, _) => {
if c1.abs_diff_eq(*c2, EPS.point) {
continue;
}
}
PathSegment::Quadratic(_, c, _) => {
if seg.start().abs_diff_eq(*c, EPS.point) {
continue;
}
}
PathSegment::Arc(_, _, _, _, _, false, _) => continue,
_ => {}
}
}
let vertex_pair_id = (start_vertex.min(end_vertex), start_vertex.max(end_vertex));
if let Some(existing_edges) = vertex_pair_id_to_edges.get(&vertex_pair_id) {
if let Some(existing_edge) = existing_edges
.iter()
.find(|(other_seg, ..)| segments_equal(seg, &other_seg.0, EPS.point) || segments_equal(&seg.reverse(), &other_seg.0, EPS.point))
{
*parents.entry(existing_edge.1).or_default() |= parent;
*parents.entry(existing_edge.2).or_default() |= parent;
continue;
}
}
let fwd_edge_key = graph.edges.insert(MajorGraphEdge {
seg: *seg,
parent: *parent,
incident_vertices: [start_vertex, end_vertex],
direction_flag: Direction::Forward,
twin: None,
});
let bwd_edge_key = graph.edges.insert(MajorGraphEdge {
seg: *seg,
parent: *parent,
incident_vertices: [end_vertex, start_vertex],
direction_flag: Direction::Backwards,
twin: Some(fwd_edge_key),
});
graph.edges[fwd_edge_key].twin = Some(bwd_edge_key);
graph.vertices[start_vertex].outgoing_edges.push(fwd_edge_key);
graph.vertices[end_vertex].outgoing_edges.push(bwd_edge_key);
vertex_pair_id_to_edges
.entry(vertex_pair_id)
.or_default()
.push(((*seg, *parent, *bounding_box), fwd_edge_key, bwd_edge_key));
}
for (edge_key, parent) in parents {
graph.edges[edge_key].parent |= parent;
}
graph
}
fn get_order(vertex: &MajorGraphVertex) -> usize {
vertex.outgoing_edges.len()
}
/// Computes the minor graph from the major graph.
///
/// This function simplifies the graph structure by performing the following steps:
/// 1. Iterates through vertices of the major graph.
/// 2. For vertices with exactly two edges (degree 2):
/// a. Combines the two edges into a single edge if they have the same parent.
/// b. Updates the endpoints of the new edge to skip the current vertex.
/// 3. For vertices with degree != 2:
/// a. Creates a new vertex in the minor graph.
/// b. Creates new edges in the minor graph for each outgoing edge.
/// 4. Handles any cyclic components (closed loops with no high-degree vertices).
///
/// The resulting minor graph preserves the topological structure of the paths
/// while reducing the number of vertices and edges.
///
/// # Arguments
///
/// * `major_graph` - A reference to the MajorGraph.
///
/// # Returns
///
/// A new MinorGraph representing the simplified structure.
fn compute_minor(major_graph: &MajorGraph) -> MinorGraph {
let mut new_edges = SlotMap::with_key();
let mut new_vertices = SlotMap::with_key();
let mut to_minor_vertex = HashMap::new();
let mut id_to_edge = HashMap::new();
let mut visited = HashSet::new();
// Handle components that are not cycles
for (major_vertex_key, vertex) in &major_graph.vertices {
// Edges are contracted
if get_order(vertex) == 2 {
continue;
}
let start_vertex = *to_minor_vertex
.entry(major_vertex_key)
.or_insert_with(|| new_vertices.insert(MinorGraphVertex { outgoing_edges: Vec::new() }));
for &start_edge_key in &vertex.outgoing_edges {
let mut segments = Vec::new();
let mut edge_key = start_edge_key;
let mut edge = &major_graph.edges[edge_key];
while edge.parent == major_graph.edges[start_edge_key].parent
&& edge.direction_flag == major_graph.edges[start_edge_key].direction_flag
&& get_order(&major_graph.vertices[edge.incident_vertices[1]]) == 2
{
segments.push(edge.seg);
visited.insert(edge.incident_vertices[1]);
let next_vertex = &major_graph.vertices[edge.incident_vertices[1]];
// Choose the edge which is not our twin so we can make progress
edge_key = *next_vertex.outgoing_edges.iter().find(|&&e| Some(e) != edge.twin).unwrap();
edge = &major_graph.edges[edge_key];
}
segments.push(edge.seg);
let end_vertex = *to_minor_vertex
.entry(edge.incident_vertices[1])
.or_insert_with(|| new_vertices.insert(MinorGraphVertex { outgoing_edges: Vec::new() }));
assert!(major_graph.edges[start_edge_key].twin.is_some());
assert!(edge.twin.is_some());
let edge_id = (start_edge_key, edge_key);
let twin_id = (edge.twin.unwrap(), major_graph.edges[start_edge_key].twin.unwrap());
let twin_key = id_to_edge.get(&twin_id);
let new_edge_key = new_edges.insert(MinorGraphEdge {
segments,
parent: major_graph.edges[start_edge_key].parent,
incident_vertices: [start_vertex, end_vertex],
direction_flag: major_graph.edges[start_edge_key].direction_flag,
twin: twin_key.copied(),
});
if let Some(&twin_key) = twin_key {
new_edges[twin_key].twin = Some(new_edge_key);
}
id_to_edge.insert(edge_id, new_edge_key);
new_vertices[start_vertex].outgoing_edges.push(new_edge_key);
}
}
// Handle cyclic components (if any)
let mut cycles = Vec::new();
for (major_vertex_key, vertex) in &major_graph.vertices {
if vertex.outgoing_edges.len() != 2 || visited.contains(&major_vertex_key) {
continue;
}
let mut edge_key = vertex.outgoing_edges[0];
let mut edge = &major_graph.edges[edge_key];
let mut cycle = MinorGraphCycle {
segments: Vec::new(),
parent: edge.parent,
direction_flag: edge.direction_flag,
};
loop {
cycle.segments.push(edge.seg);
visited.insert(edge.incident_vertices[0]);
assert_eq!(major_graph.vertices[edge.incident_vertices[1]].outgoing_edges.len(), 2, "Found an unvisited vertex of order != 2.");
let next_vertex = &major_graph.vertices[edge.incident_vertices[1]];
edge_key = *next_vertex.outgoing_edges.iter().find(|&&e| Some(e) != edge.twin).unwrap();
edge = &major_graph.edges[edge_key];
if edge.incident_vertices[0] == major_vertex_key {
break;
}
}
cycles.push(cycle);
}
MinorGraph {
edges: new_edges,
vertices: new_vertices,
cycles,
}
}
fn remove_dangling_edges(graph: &mut MinorGraph) {
// Basically DFS for each parent with BFS number
fn walk(parent: u8, graph: &MinorGraph) -> HashSet<MinorVertexKey> {
let mut kept_vertices = HashSet::new();
let mut vertex_to_level = HashMap::new();
fn visit(
vertex: MinorVertexKey,
incoming_edge: Option<MinorEdgeKey>,
level: usize,
graph: &MinorGraph,
vertex_to_level: &mut HashMap<MinorVertexKey, usize>,
kept_vertices: &mut HashSet<MinorVertexKey>,
parent: u8,
) -> usize {
if let Some(&existing_level) = vertex_to_level.get(&vertex) {
return existing_level;
}
vertex_to_level.insert(vertex, level);
let mut min_level = usize::MAX;
for &edge_key in &graph.vertices[vertex].outgoing_edges {
let edge = &graph.edges[edge_key];
if edge.parent & parent != 0 && Some(edge_key) != incoming_edge {
min_level = min_level.min(visit(edge.incident_vertices[1], edge.twin, level + 1, graph, vertex_to_level, kept_vertices, parent));
}
}
if min_level <= level {
kept_vertices.insert(vertex);
}
min_level
}
for edge in graph.edges.values() {
if edge.parent & parent != 0 {
visit(edge.incident_vertices[0], None, 0, graph, &mut vertex_to_level, &mut kept_vertices, parent);
}
}
kept_vertices
}
let kept_vertices_a = walk(1, graph);
let kept_vertices_b = walk(2, graph);
graph.vertices.retain(|k, _| kept_vertices_a.contains(&k) || kept_vertices_b.contains(&k));
for vertex in graph.vertices.values_mut() {
vertex.outgoing_edges.retain(|&edge_key| {
let edge = &graph.edges[edge_key];
(edge.parent & 1 == 1 && kept_vertices_a.contains(&edge.incident_vertices[0]) && kept_vertices_a.contains(&edge.incident_vertices[1]))
|| (edge.parent & 2 == 2 && kept_vertices_b.contains(&edge.incident_vertices[0]) && kept_vertices_b.contains(&edge.incident_vertices[1]))
});
}
// TODO(@TrueDoctor): merge
graph.edges.retain(|_, edge| {
(edge.parent & 1 == 1 && kept_vertices_a.contains(&edge.incident_vertices[0]) && kept_vertices_a.contains(&edge.incident_vertices[1]))
|| (edge.parent & 2 == 2 && kept_vertices_b.contains(&edge.incident_vertices[0]) && kept_vertices_b.contains(&edge.incident_vertices[1]))
});
}
fn sort_outgoing_edges_by_angle(graph: &mut MinorGraph) {
for (vertex_key, vertex) in graph.vertices.iter_mut() {
if vertex.outgoing_edges.len() > 2 {
vertex.outgoing_edges.sort_by(|&a, &b| graph.edges[a].partial_cmp(&graph.edges[b]).unwrap());
if cfg!(feature = "logging") {
eprintln!("Outgoing edges for {:?}:", vertex_key);
for &edge_key in &vertex.outgoing_edges {
let edge = &graph.edges[edge_key];
let angle = edge.start_segment().start_angle();
eprintln!("{:?}: {}°", edge_key.0, angle.to_degrees())
}
}
}
}
}
fn face_to_polygon(face: &DualGraphVertex, edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>) -> Vec<DVec2> {
const CNT: usize = 3;
face.incident_edges
.iter()
.flat_map(|&edge_key| {
let edge = &edges[edge_key];
edge.segments.iter().flat_map(move |seg| {
(0..CNT).map(move |i| {
let t0 = i as f64 / CNT as f64;
let t = if edge.direction_flag.forward() { t0 } else { 1. - t0 };
seg.sample_at(t)
})
})
})
.collect()
}
fn interval_crosses_point(a: f64, b: f64, p: f64) -> bool {
let dy1 = a >= p;
let dy2 = b < p;
dy1 == dy2
}
fn line_segment_intersects_horizontal_ray(a: DVec2, b: DVec2, point: DVec2) -> bool {
if !interval_crosses_point(a.y, b.y, point.y) {
return false;
}
let x = crate::math::lin_map(point.y, a.y, b.y, a.x, b.x);
x >= point.x
}
fn compute_point_winding(polygon: &[DVec2], tested_point: DVec2) -> i32 {
if polygon.len() <= 2 {
return 0;
}
let mut prev_point = polygon[polygon.len() - 1];
let mut winding = 0;
for &point in polygon {
if line_segment_intersects_horizontal_ray(prev_point, point, tested_point) {
winding += if point.y > prev_point.y { -1 } else { 1 };
}
prev_point = point;
}
winding
}
fn compute_winding(face: &DualGraphVertex, edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>) -> Option<i32> {
let polygon = face_to_polygon(face, edges);
for i in 0..polygon.len() {
let a = polygon[i];
let b = polygon[(i + 1) % polygon.len()];
let c = polygon[(i + 2) % polygon.len()];
let center = (a + b + c) / 3.;
let winding = compute_point_winding(&polygon, center);
if winding != 0 {
return Some(winding);
}
}
None
}
fn compute_signed_area(face: &DualGraphVertex, edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>) -> f64 {
let polygon = face_to_polygon(face, edges);
if polygon.len() <= 4 {
return -1.;
}
#[cfg(feature = "logging")]
eprintln!("vertex: {:?}", face);
#[cfg(feature = "logging")]
for point in &polygon {
eprintln!("{}, {}", point.x, point.y);
}
let mut area = 0.;
for i in 0..polygon.len() {
let a = polygon[i];
let b = polygon[(i + 1) % polygon.len()];
area += a.x * b.y;
area -= b.x * a.y;
}
#[cfg(feature = "logging")]
eprintln!("winding: {}", area);
area
}
/// Computes the dual graph from the minor graph.
///
/// This function creates the dual graph by following these steps:
/// 1. Initializes empty structures for dual graph vertices and edges.
/// 2. For each edge in the minor graph:
/// a. Creates a new face (dual vertex) if not already created.
/// b. Traverses around the face, creating dual edges for each minor edge.
/// c. Connects dual edges to their twins (edges representing the same minor edge).
/// 3. Handles special cases like isolated cycles.
/// 4. Groups dual graph elements into connected components.
/// 5. Determines the outer face for each component.
///
/// The dual graph represents faces of the minor graph as vertices and adjacencies
/// between faces as edges, effectively flipping the concepts of vertices and faces.
///
/// # Arguments
///
/// * `minor_graph` - A reference to the MinorGraph.
///
/// # Returns
///
/// A Result containing either the computed DualGraph or a BooleanError if the
/// operation cannot be completed successfully.
fn compute_dual(minor_graph: &MinorGraph) -> Result<DualGraph, BooleanError> {
let mut new_vertices: Vec<DualVertexKey> = Vec::new();
let mut minor_to_dual_edge: HashMap<MinorEdgeKey, DualEdgeKey> = HashMap::new();
let mut dual_edges = SlotMap::with_key();
let mut dual_vertices = SlotMap::with_key();
for (start_edge_key, start_edge) in &minor_graph.edges {
#[cfg(feature = "logging")]
eprintln!("Processing start edge: {}", (start_edge_key.0.as_ffi() & 0xFF));
if minor_to_dual_edge.contains_key(&start_edge_key) {
continue;
}
let face_key = dual_vertices.insert(DualGraphVertex { incident_edges: Vec::new() });
let mut edge_key = start_edge_key;
let mut edge = start_edge;
loop {
#[cfg(feature = "logging")]
eprintln!("Processing edge: {}", (edge_key.0.as_ffi() & 0xFF));
let twin = edge.twin.expect("Edge doesn't have a twin");
let twin_dual_key = minor_to_dual_edge.get(&twin).copied();
let new_edge_key = dual_edges.insert(DualGraphHalfEdge {
segments: edge.segments.clone(),
parent: edge.parent,
incident_vertex: face_key,
direction_flag: edge.direction_flag,
twin: twin_dual_key,
});
if let Some(twin_key) = twin_dual_key {
dual_edges[twin_key].twin = Some(new_edge_key);
}
minor_to_dual_edge.insert(edge_key, new_edge_key);
dual_vertices[face_key].incident_edges.push(new_edge_key);
edge_key = get_next_edge(edge_key, minor_graph);
#[cfg(feature = "logging")]
eprintln!("Next edge: {}", (edge_key.0.as_ffi() & 0xFF));
edge = &minor_graph.edges[edge_key];
if edge.incident_vertices[0] == start_edge.incident_vertices[0] {
break;
}
}
new_vertices.push(face_key);
}
for cycle in &minor_graph.cycles {
let inner_face_key = dual_vertices.insert(DualGraphVertex { incident_edges: Vec::new() });
let outer_face_key = dual_vertices.insert(DualGraphVertex { incident_edges: Vec::new() });
let inner_half_edge_key = dual_edges.insert(DualGraphHalfEdge {
segments: cycle.segments.clone(),
parent: cycle.parent,
incident_vertex: inner_face_key,
direction_flag: cycle.direction_flag,
twin: None,
});
let outer_half_edge_key = dual_edges.insert(DualGraphHalfEdge {
segments: cycle.segments.iter().cloned().rev().collect(),
parent: cycle.parent,
incident_vertex: outer_face_key,
direction_flag: !cycle.direction_flag,
twin: Some(inner_half_edge_key),
});
dual_edges[inner_half_edge_key].twin = Some(outer_half_edge_key);
dual_vertices[inner_face_key].incident_edges.push(inner_half_edge_key);
dual_vertices[outer_face_key].incident_edges.push(outer_half_edge_key);
new_vertices.push(inner_face_key);
new_vertices.push(outer_face_key);
}
let mut components = Vec::new();
let mut visited_vertices = HashSet::new();
let mut visited_edges = HashSet::new();
if cfg!(feature = "logging") {
eprintln!("faces: {}, dual-edges: {}, cycles: {}", new_vertices.len(), dual_edges.len(), minor_graph.cycles.len())
}
// This can be very useful for debugging:
// Copy the face outlines to a file called faces_combined.csv and then use this gnuplot command:
// ```
// plot 'faces_combined.csv' i 0:99 w l, 'faces_combined.csv' index 0 w l lc 'red'
// ```
// The first part of the command plots all faces to the graph and the second comand plots one surface,
// specified by the index, in red. This allows you to check if all surfaces are closed paths and can
// be used in conjunction with the flag debugging to identify issues later down the line as well.
#[cfg(feature = "logging")]
for (vertex_key, vertex) in &dual_vertices {
eprintln!("\n\n#{:?}", vertex_key.0);
let polygon = face_to_polygon(vertex, &dual_edges);
for point in polygon.iter() {
eprintln!("{}, {}", point.x, point.y);
}
eprintln!("{}, {}", polygon[0].x, polygon[0].y);
}
for &start_vertex_key in &new_vertices {
if visited_vertices.contains(&start_vertex_key) {
continue;
}
let mut component_vertices = Vec::new();
let mut component_edges = Vec::new();
let mut stack = vec![start_vertex_key];
while let Some(vertex_key) = stack.pop() {
if visited_vertices.insert(vertex_key) {
component_vertices.push(vertex_key);
}
for &edge_key in &dual_vertices[vertex_key].incident_edges {
if !visited_edges.insert(edge_key) {
continue;
}
let edge = &dual_edges[edge_key];
let twin_key = edge.twin.expect("Edge doesn't have a twin.");
component_edges.push(edge_key);
component_edges.push(twin_key);
visited_edges.insert(twin_key);
stack.push(dual_edges[twin_key].incident_vertex);
}
}
#[cfg(feature = "logging")]
eprintln!("component_vertices: {}", component_vertices.len());
let windings: Option<Vec<_>> = component_vertices
.iter()
.map(|face_key| compute_winding(&dual_vertices[*face_key], &dual_edges).map(|w| (face_key, w)))
.collect();
let Some(windings) = windings else {
return Err(BooleanError::NoEarInPolygon);
};
let areas: Vec<_> = component_vertices
.iter()
.map(|face_key| (face_key, compute_signed_area(&dual_vertices[*face_key], &dual_edges)))
.collect();
#[cfg(feature = "logging")]
dbg!(&areas);
#[cfg(feature = "logging")]
if cfg!(feature = "logging") {
eprintln!(
"{}",
dual_graph_to_dot(
&[DualGraphComponent {
vertices: component_vertices.clone(),
edges: component_edges.clone(),
outer_face: None,
}],
&dual_edges,
)
);
}
let mut count = windings.iter().filter(|(_, winding)| winding < &0).count();
let mut reverse_winding = false;
// If the paths are reversed use positive winding as outer face
if windings.len() > 2 && count == windings.len() - 1 {
count = 1;
reverse_winding = true;
}
let outer_face_key = if count != 1 {
#[cfg(feature = "logging")]
eprintln!("Found multiple outer faces: {areas:?}, falling back to area calculation");
let (key, _) = *areas.iter().max_by_key(|(_, area)| ((area.abs() * 1000.) as u64)).unwrap();
*key
} else {
*windings
.iter()
.find(|&&(&_, ref winding)| (winding < &0) ^ reverse_winding)
.expect("No outer face of a component found.")
.0
};
#[cfg(feature = "logging")]
dbg!(outer_face_key);
components.push(DualGraphComponent {
vertices: component_vertices,
edges: component_edges,
outer_face: Some(outer_face_key),
});
}
Ok(DualGraph {
vertices: dual_vertices,
edges: dual_edges,
components,
})
}
fn get_next_edge(edge_key: MinorEdgeKey, graph: &MinorGraph) -> MinorEdgeKey {
let edge = &graph.edges[edge_key];
let vertex = &graph.vertices[edge.incident_vertices[1]];
#[cfg(feature = "logging")]
eprintln!("{edge_key:?}, twin: {:?}, {:?}", edge.twin, vertex.outgoing_edges);
let index = vertex.outgoing_edges.iter().position(|&e| Some(edge_key) == graph.edges[e].twin).unwrap();
vertex.outgoing_edges[(index + 1) % vertex.outgoing_edges.len()]
}
fn test_inclusion(a: &DualGraphComponent, b: &DualGraphComponent, edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>, vertices: &SlotMap<DualVertexKey, DualGraphVertex>) -> Option<DualVertexKey> {
let tested_point = edges[a.edges[0]].segments[0].start();
for (face_key, face) in b.vertices.iter().map(|&key| (key, &vertices[key])) {
if Some(face_key) == b.outer_face {
continue;
}
let mut count = 0;
for &edge_key in &face.incident_edges {
let edge = &edges[edge_key];
for seg in &edge.segments {
count += path_segment_horizontal_ray_intersection_count(seg, tested_point);
}
}
if count % 2 == 1 {
return Some(face_key);
}
}
None
}
fn bounding_box_intersects_horizontal_ray(bounding_box: &Aabb, point: DVec2) -> bool {
interval_crosses_point(bounding_box.top, bounding_box.bottom, point[1]) && bounding_box.right >= point[0]
}
struct IntersectionSegment {
bounding_box: Aabb,
seg: PathSegment,
}
pub fn path_segment_horizontal_ray_intersection_count(orig_seg: &PathSegment, point: DVec2) -> usize {
let total_bounding_box = orig_seg.bounding_box();
if !bounding_box_intersects_horizontal_ray(&total_bounding_box, point) {
return 0;
}
let mut segments = vec![IntersectionSegment {
bounding_box: total_bounding_box,
seg: *orig_seg,
}];
let mut count = 0;
while !segments.is_empty() {
let mut next_segments = Vec::new();
for segment in segments {
if bounding_box_max_extent(&segment.bounding_box) < EPS.linear {
if line_segment_intersects_horizontal_ray(segment.seg.start(), segment.seg.end(), point) {
count += 1;
}
} else {
let split = &segment.seg.split_at(0.5);
let bounding_box0 = split.0.bounding_box();
let bounding_box1 = split.1.bounding_box();
if bounding_box_intersects_horizontal_ray(&bounding_box0, point) {
next_segments.push(IntersectionSegment {
bounding_box: bounding_box0,
seg: split.0,
});
}
if bounding_box_intersects_horizontal_ray(&bounding_box1, point) {
next_segments.push(IntersectionSegment {
bounding_box: bounding_box1,
seg: split.1,
});
}
}
}
segments = next_segments;
}
count
}
/// Computes the nesting tree of the dual graph components.
///
/// This function builds a hierarchical structure representing how the components
/// of the dual graph are nested within each other. It does this by:
/// 1. Initializing an empty list of top-level nesting trees.
/// 2. For each component in the dual graph:
/// a. Tests for inclusion against existing nesting trees.
/// b. If included in an existing tree, recursively inserts it at the appropriate level.
/// c. If not included, creates a new top-level tree.
/// d. Checks if any existing trees should become children of the new tree.
/// 3. Continues this process until all components are placed in the nesting structure.
///
/// The resulting nesting tree captures the containment relationships between
/// different regions of the original paths.
///
/// # Arguments
///
/// * `dual_graph` - A reference to the DualGraph.
///
/// # Returns
///
/// A vector of NestingTree structures representing the top-level components and their nested subcomponents.
fn compute_nesting_tree(DualGraph { components, vertices, edges }: &DualGraph) -> Vec<NestingTree> {
let mut nesting_trees = Vec::new();
for component in components {
insert_component(&mut nesting_trees, component, edges, vertices);
}
nesting_trees
}
fn insert_component(trees: &mut Vec<NestingTree>, component: &DualGraphComponent, edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>, vertices: &SlotMap<DualVertexKey, DualGraphVertex>) {
for tree in trees.iter_mut() {
if let Some(face_key) = test_inclusion(component, &tree.component, edges, vertices) {
if let Some(children) = tree.outgoing_edges.get_mut(&face_key) {
insert_component(children, component, edges, vertices);
} else {
tree.outgoing_edges.insert(
face_key,
vec![NestingTree {
component: component.clone(),
outgoing_edges: HashMap::new(),
}],
);
}
return;
}
}
let mut new_tree = NestingTree {
component: component.clone(),
outgoing_edges: HashMap::new(),
};
let mut i = 0;
while i < trees.len() {
if let Some(face_key) = test_inclusion(&trees[i].component, &new_tree.component, edges, vertices) {
// TODO: (@TrueDoctor) use swap remove
let tree = trees.remove(i);
new_tree.outgoing_edges.entry(face_key).or_default().push(tree);
} else {
i += 1;
}
}
trees.push(new_tree);
}
fn get_flag(count: i32, fill_rule: FillRule) -> u8 {
match fill_rule {
FillRule::NonZero => {
if count == 0 {
0
} else {
1
}
}
FillRule::EvenOdd => (count % 2).unsigned_abs() as u8,
}
}
/// Determines which faces should be included in the result based on the boolean operation.
///
/// This function applies the specified boolean operation and fill rules to decide
/// which regions of the dual graph should be part of the resulting path.
fn flag_faces(
nesting_trees: &[NestingTree],
a_fill_rule: FillRule,
b_fill_rule: FillRule,
edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>,
vertices: &SlotMap<DualVertexKey, DualGraphVertex>,
flags: &mut HashMap<DualVertexKey, u8>,
) {
for tree in nesting_trees.iter() {
let mut tree_stack = vec![(tree, 0, 0)];
while let Some((current_tree, a_running_count, b_running_count)) = tree_stack.pop() {
let mut visited_faces = HashSet::new();
let mut face_stack = VecDeque::new();
let outer_face_key = current_tree.component.outer_face.expect("Component doesn't have an outer face.");
face_stack.push_back((outer_face_key, a_running_count, b_running_count));
while let Some((face_key, a_count, b_count)) = face_stack.pop_front() {
if visited_faces.contains(&face_key) {
continue;
}
visited_faces.insert(face_key);
let a_flag = get_flag(a_count, a_fill_rule);
let b_flag = get_flag(b_count, b_fill_rule);
*flags.entry(face_key).or_default() = a_flag | (b_flag << 1);
for edge_key in &vertices[face_key].incident_edges {
let edge = &edges[*edge_key];
let twin_key = edge.twin.expect("Edge doesn't have a twin");
#[cfg(feature = "logging")]
eprintln!("Processing edge: {:?} to: {:?}", edge_key.0, edges[twin_key].incident_vertex.0);
let mut next_a_count = a_count;
if edge.parent & 1 != 0 {
next_a_count += if edge.direction_flag.forward() { 1 } else { -1 };
}
let mut next_b_count = b_count;
if edge.parent & 2 != 0 {
next_b_count += if edge.direction_flag.forward() { 1 } else { -1 };
}
#[cfg(feature = "logging")]
eprintln!("next_count a: {}, b:{}", next_a_count, next_b_count);
face_stack.push_back((edges[twin_key].incident_vertex, next_a_count, next_b_count));
}
// Collect subtrees to be processed later
if let Some(subtrees) = current_tree.outgoing_edges.get(&face_key) {
for subtree in subtrees {
tree_stack.push((subtree, a_count, b_count));
}
}
}
}
}
}
fn get_selected_faces<'a>(predicate: &'a impl Fn(u8) -> bool, flags: &'a HashMap<DualVertexKey, u8>) -> impl Iterator<Item = DualVertexKey> + 'a {
flags.iter().filter_map(|(key, &flag)| predicate(flag).then_some(*key))
}
fn walk_faces<'a>(faces: &'a [DualVertexKey], edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>, vertices: &SlotMap<DualVertexKey, DualGraphVertex>) -> impl Iterator<Item = PathSegment> + use<'a> {
let face_set: HashSet<_> = faces.iter().copied().collect();
// TODO: Try using a binary search to avoid the hashset construction
let is_removed_edge = |edge: &DualGraphHalfEdge| face_set.contains(&edge.incident_vertex) == face_set.contains(&edges[edge.twin.unwrap()].incident_vertex);
let mut edge_to_next = HashMap::new();
for face_key in faces {
let face = &vertices[*face_key];
let mut prev_edge = *face.incident_edges.last().unwrap();
for &edge in &face.incident_edges {
edge_to_next.insert(prev_edge, edge);
prev_edge = edge;
}
}
let mut visited_edges = HashSet::new();
let mut result = Vec::new();
for &face_key in faces {
let face = &vertices[face_key];
for &start_edge in &face.incident_edges {
if is_removed_edge(&edges[start_edge]) || visited_edges.contains(&start_edge) {
continue;
}
let mut edge = start_edge;
loop {
let current_edge = &edges[edge];
if current_edge.direction_flag.forward() {
result.extend(current_edge.segments.iter().cloned());
} else {
result.extend(current_edge.segments.iter().map(PathSegment::reverse));
}
visited_edges.insert(edge);
edge = *edge_to_next.get(&edge).unwrap();
while is_removed_edge(&edges[edge]) {
edge = *edge_to_next.get(&edges[edge].twin.unwrap()).unwrap();
}
if edge == start_edge {
break;
}
}
}
}
result.into_iter()
}
/// Reconstructs the resulting path(s) from the selected faces of the dual graph.
///
/// This function takes the faces that were flagged for inclusion and reconstructs
/// the path segments that form the boundaries of these faces, resulting in the
/// final output of the boolean operation.
fn dump_faces(
nesting_trees: &[NestingTree],
predicate: impl Fn(u8) -> bool + Copy,
edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>,
vertices: &SlotMap<DualVertexKey, DualGraphVertex>,
flags: &HashMap<DualVertexKey, u8>,
) -> Vec<Path> {
let mut paths = Vec::new();
fn visit(
tree: &NestingTree,
predicate: impl Fn(u8) -> bool + Copy,
paths: &mut Vec<Path>,
edges: &SlotMap<DualEdgeKey, DualGraphHalfEdge>,
vertices: &SlotMap<DualVertexKey, DualGraphVertex>,
flags: &HashMap<DualVertexKey, u8>,
) {
for &face_key in tree.component.vertices.iter() {
let face = &vertices[face_key];
let flag = flags[&face_key];
if !predicate(flag) || Some(face_key) == tree.component.outer_face {
continue;
}
let mut path = Vec::new();
for &edge_key in &face.incident_edges {
let edge = &edges[edge_key];
if edge.direction_flag.forward() {
path.extend(edge.segments.iter().cloned());
} else {
path.extend(edge.segments.iter().map(PathSegment::reverse));
}
}
// Poke holes in the face
if let Some(subtrees) = tree.outgoing_edges.get(&face_key) {
for subtree in subtrees {
let outer_face_key = subtree.component.outer_face.unwrap();
for &edge_key in &vertices[outer_face_key].incident_edges {
let edge = &edges[edge_key];
if edge.direction_flag.forward() {
path.extend(edge.segments.iter().cloned());
} else {
path.extend(edge.segments.iter().map(PathSegment::reverse));
}
}
}
}
paths.push(path);
}
for subtrees in tree.outgoing_edges.values() {
for subtree in subtrees {
visit(subtree, predicate, paths, edges, vertices, flags);
}
}
}
for tree in nesting_trees {
visit(tree, predicate, &mut paths, edges, vertices, flags);
}
paths
}
const OPERATION_PREDICATES: [fn(u8) -> bool; 6] = [
|flag: u8| flag > 0, // Union
|flag: u8| flag == 1, // Difference
|flag: u8| flag == 0b11, // Intersection
|flag: u8| flag == 1 || flag == 2, // Exclusion
|flag: u8| (flag & 1) == 1, // Division
|flag: u8| flag > 0, // Fracture
];
/// Represents errors that can occur during boolean operations on paths.
#[derive(Debug)]
pub enum BooleanError {
/// Indicates that multiple outer faces were found where only one was expected.
MultipleOuterFaces,
/// Indicates that no valid ear was found in a polygon during triangulation. <https://en.wikipedia.org/wiki/Vertex_(geometry)#Ears>
NoEarInPolygon,
InvalidPathCommand(char),
}
impl Display for BooleanError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Self::MultipleOuterFaces => f.write_str("Found multiple candidates for the outer face in a connected component of the dual graph."),
Self::NoEarInPolygon => f.write_str("Failed to compute winding order for one of the faces, this usually happens when the polygon is malformed."),
Self::InvalidPathCommand(cmd) => f.write_fmt(format_args!("Encountered a '{cmd}' while parsing the svg data which was not recognized")),
}
}
}
/// Performs boolean operations on two paths.
///
/// Takes two paths, applies specified fill rules, and performs a boolean operation,
/// returning the resulting path(s).
///
/// # Examples
///
/// ```
/// use path_bool::{path_boolean, FillRule, PathBooleanOperation, path_from_path_data, path_to_path_data};
///
/// let path_a = path_from_path_data("M 10 10 L 50 10 L 30 40 Z").unwrap();
/// let path_b = path_from_path_data("M 20 30 L 60 30 L 60 50 L 20 50 Z").unwrap();
///
/// let result = path_boolean(
/// &path_a,
/// FillRule::NonZero,
/// &path_b,
/// FillRule::NonZero,
/// PathBooleanOperation::Intersection
/// ).unwrap();
///
/// let result_data = path_to_path_data(&result[0], 0.001);
/// assert_eq!(result_data, "M 36.666666666667,30.000000000000 L 23.333333333333,30.000000000000 L 30.000000000000,40.000000000000 L 36.666666666667,30.000000000000 Z");
/// ```
///
/// # Operations
///
/// The function supports various boolean operations:
/// - Union
/// - Difference
/// - Intersection
/// - Exclusion
/// - Division
/// - Fracture
///
/// See [`PathBooleanOperation`] for more details on each operation.
///
/// # Algorithm
///
/// The boolean operation is performed in several steps:
///
/// 1. Preprocessing: Convert input paths to edges and split at intersections.
/// 2. Graph Construction: Build a graph representation of path segments.
/// 3. Intersection Analysis: Compute intersections between path segments.
/// 4. Graph Transformation: Convert the initial graph into the graph minor using edge contractions.
/// 5. Nesting Analysis: Determine nesting relationships between path parts.
/// 6. Boolean Evaluation: Apply the specified operation based on nesting.
/// 7. Result Construction: Generate final path(s) based on the operation result.
///
/// # Errors
///
/// Returns a [`BooleanError`] if:
/// - Input paths are invalid or cannot be processed.
/// - The operation encounters an unsolvable geometric configuration.
/// - Issues arise in determining the nesting structure of the paths.
pub fn path_boolean(a: &Path, a_fill_rule: FillRule, b: &Path, b_fill_rule: FillRule, op: PathBooleanOperation) -> Result<Vec<Path>, BooleanError> {
let mut unsplit_edges: Vec<MajorGraphEdgeStage1> = a.iter().map(segment_to_edge(1)).chain(b.iter().map(segment_to_edge(2))).flatten().collect();
split_at_self_intersections(&mut unsplit_edges);
let (split_edges, total_bounding_box) = split_at_intersections(&unsplit_edges);
#[cfg(feature = "logging")]
for (edge, _, _) in split_edges.iter() {
eprintln!("{}", path_to_path_data(&vec![*edge], 0.001));
}
let total_bounding_box = match total_bounding_box {
Some(bb) => bb,
None => return Ok(Vec::new()), // Input geometry is empty
};
let major_graph = find_vertices(&split_edges, total_bounding_box);
#[cfg(feature = "logging")]
eprintln!("Major graph:");
#[cfg(feature = "logging")]
eprintln!("{}", major_graph_to_dot(&major_graph));
let mut minor_graph = compute_minor(&major_graph);
#[cfg(feature = "logging")]
eprintln!("Minor graph:");
#[cfg(feature = "logging")]
eprintln!("{}", minor_graph_to_dot(&minor_graph.edges));
remove_dangling_edges(&mut minor_graph);
#[cfg(feature = "logging")]
eprintln!("After removing dangling edges:");
#[cfg(feature = "logging")]
eprintln!("{}", minor_graph_to_dot(&minor_graph.edges));
#[cfg(feature = "logging")]
for (key, edge) in minor_graph.edges.iter() {
eprintln!("{key:?}:\n{}", path_to_path_data(&edge.segments, 0.001));
}
#[cfg(feature = "logging")]
for vertex in minor_graph.vertices.values() {
eprintln!("{:?}", vertex);
}
sort_outgoing_edges_by_angle(&mut minor_graph);
#[cfg(feature = "logging")]
for vertex in minor_graph.vertices.values() {
eprintln!("{:?}", vertex);
}
for (edge_key, edge) in &minor_graph.edges {
assert!(minor_graph.vertices.contains_key(edge.incident_vertices[0]), "Edge {:?} has invalid start vertex", edge_key);
assert!(minor_graph.vertices.contains_key(edge.incident_vertices[1]), "Edge {:?} has invalid end vertex", edge_key);
assert!(edge.twin.is_some(), "Edge {:?} should have a twin", edge_key);
let twin = &minor_graph.edges[edge.twin.unwrap()];
assert_eq!(twin.twin.unwrap(), edge_key, "Twin relationship should be symmetrical for edge {:?}", edge_key);
}
let dual_graph = compute_dual(&minor_graph)?;
let nesting_trees = compute_nesting_tree(&dual_graph);
#[cfg(feature = "logging")]
for tree in &nesting_trees {
eprintln!("nesting_trees: {:?}", tree);
}
let DualGraph { edges, vertices, .. } = &dual_graph;
#[cfg(feature = "logging")]
eprintln!("Dual Graph:");
#[cfg(feature = "logging")]
eprintln!("{}", dual_graph_to_dot(&dual_graph.components, edges));
let mut flags = HashMap::new();
flag_faces(&nesting_trees, a_fill_rule, b_fill_rule, edges, vertices, &mut flags);
#[cfg(feature = "logging")]
for (face, flag) in &flags {
eprintln!("{:?}: {:b}", face.0, flag);
}
let predicate = OPERATION_PREDICATES[op as usize];
match op {
PathBooleanOperation::Division | PathBooleanOperation::Fracture => Ok(dump_faces(&nesting_trees, predicate, edges, vertices, &flags)),
_ => {
let mut selected_faces: Vec<DualVertexKey> = get_selected_faces(&predicate, &flags).collect();
selected_faces.sort_unstable();
Ok(vec![walk_faces(&selected_faces, edges, vertices).collect()])
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use glam::DVec2;
use std::f64::consts::TAU; // Assuming DVec2 is defined in your crate
#[test]
fn test_split_at_intersections() {
let unsplit_edges = unsplit_edges();
let (split_edges, total_bounding_box) = split_at_intersections(&unsplit_edges);
// Check that we have a valid bounding box
assert!(total_bounding_box.is_some());
// Check that we have more edges after splitting (due to intersections)
assert!(split_edges.len() >= unsplit_edges.len());
// Check that all edges have a valid bounding box
for (_, _, bb) in &split_edges {
assert!(bb.left <= bb.right);
assert!(bb.top <= bb.bottom);
}
// You might want to add more specific checks based on the expected behavior
// of your split_at_intersections function
}
fn unsplit_edges() -> Vec<(PathSegment, u8)> {
let unsplit_edges = vec![
(PathSegment::Arc(DVec2::new(39., 20.), 19., 19., 0., false, true, DVec2::new(20., 39.)), 1),
(PathSegment::Arc(DVec2::new(20., 39.), 19., 19., 0., false, true, DVec2::new(1., 20.)), 1),
(PathSegment::Arc(DVec2::new(1., 20.), 19., 19., 0., false, true, DVec2::new(20., 1.)), 1),
(PathSegment::Arc(DVec2::new(20., 1.), 19., 19., 0., false, true, DVec2::new(39., 20.)), 1),
(PathSegment::Arc(DVec2::new(47., 28.), 19., 19., 0., false, true, DVec2::new(28., 47.)), 2),
(PathSegment::Arc(DVec2::new(28., 47.), 19., 19., 0., false, true, DVec2::new(9., 28.)), 2),
(PathSegment::Arc(DVec2::new(9., 28.), 19., 19., 0., false, true, DVec2::new(28., 9.)), 2),
(PathSegment::Arc(DVec2::new(28., 9.), 19., 19., 0., false, true, DVec2::new(47., 28.)), 2),
];
unsplit_edges
}
#[test]
fn test_compute_minor() {
// Set up the initial graph
let unsplit_edges = unsplit_edges();
let (split_edges, total_bounding_box) = split_at_intersections(&unsplit_edges);
let major_graph = find_vertices(&split_edges, total_bounding_box.unwrap());
// Compute minor graph
let minor_graph = compute_minor(&major_graph);
// Print minor graph state
eprintln!("Minor Graph:");
print_minor_graph_state(&minor_graph);
// Assertions
assert_eq!(minor_graph.edges.len(), 8, "Expected 8 edges in minor graph");
assert_eq!(minor_graph.vertices.len(), 2, "Expected 2 vertices in minor graph");
assert!(minor_graph.cycles.is_empty(), "Expected no cycles in minor graph");
// Check that each vertex has 4 outgoing edges
for (vertex_key, vertex) in &minor_graph.vertices {
assert_eq!(vertex.outgoing_edges.len(), 4, "Vertex {:?} should have 4 outgoing edges", vertex_key);
}
// Check that all edges have valid incident vertices and twins
for (edge_key, edge) in &minor_graph.edges {
assert!(minor_graph.vertices.contains_key(edge.incident_vertices[0]), "Edge {:?} has invalid start vertex", edge_key);
assert!(minor_graph.vertices.contains_key(edge.incident_vertices[1]), "Edge {:?} has invalid end vertex", edge_key);
assert!(edge.twin.is_some(), "Edge {:?} should have a twin", edge_key);
let twin = &minor_graph.edges[edge.twin.unwrap()];
assert_eq!(twin.twin.unwrap(), edge_key, "Twin relationship should be symmetrical for edge {:?}", edge_key);
}
// Check that parents are correctly assigned
assert_eq!(minor_graph.edges.values().filter(|e| e.parent == 1).count(), 4, "Expected 4 edges with parent 1");
assert_eq!(minor_graph.edges.values().filter(|e| e.parent == 2).count(), 4, "Expected 4 edges with parent 2");
}
fn print_minor_graph_state(graph: &MinorGraph) {
eprintln!(" Vertices: {}", graph.vertices.len());
eprintln!(" Edges: {}", graph.edges.len());
eprintln!(" Cycles: {}", graph.cycles.len());
for (vertex_key, vertex) in &graph.vertices {
eprintln!(" Vertex {:?}: {} outgoing edges", vertex_key, vertex.outgoing_edges.len());
}
for (edge_key, edge) in &graph.edges {
eprintln!(" Edge {:?}:", edge_key);
eprintln!(" Parent: {}", edge.parent);
eprintln!(" Twin: {:?}", edge.twin);
eprintln!(" Incident vertices: {:?}", edge.incident_vertices);
}
}
#[test]
fn test_sort_outgoing_edges_by_angle() {
// Set up the initial graph
let unsplit_edges = unsplit_edges();
let (split_edges, total_bounding_box) = split_at_intersections(&unsplit_edges);
let major_graph = find_vertices(&split_edges, total_bounding_box.unwrap());
let mut minor_graph = compute_minor(&major_graph);
// Print initial state
eprintln!("Initial Minor Graph:");
print_minor_graph_state(&minor_graph);
// Store initial edge order
let initial_edge_order: HashMap<MinorVertexKey, Vec<MinorEdgeKey>> = minor_graph.vertices.iter().map(|(k, v)| (k, v.outgoing_edges.clone())).collect();
// Apply sort_outgoing_edges_by_angle
sort_outgoing_edges_by_angle(&mut minor_graph);
// Print final state
eprintln!("\nAfter sort_outgoing_edges_by_angle:");
print_minor_graph_state(&minor_graph);
// Assertions
assert_eq!(minor_graph.edges.len(), 8, "Number of edges should remain unchanged");
assert_eq!(minor_graph.vertices.len(), 2, "Number of vertices should remain unchanged");
assert!(minor_graph.cycles.is_empty(), "Expected no cycles");
// Check that each vertex still has 4 outgoing edges
for (vertex_key, vertex) in &minor_graph.vertices {
assert_eq!(vertex.outgoing_edges.len(), 4, "Vertex {:?} should have 4 outgoing edges", vertex_key);
}
// Check that the edges are sorted by angle
for (vertex_key, vertex) in &minor_graph.vertices {
let angles: Vec<f64> = vertex.outgoing_edges.iter().map(|&edge_key| get_incidence_angle(&minor_graph.edges[edge_key])).collect();
// Check if angles are in ascending order
for i in 1..angles.len() {
assert!(angles[i] >= angles[i - 1], "Edges for vertex {:?} are not sorted by angle {} {}", vertex_key, angles[i], angles[i - 1]);
}
// Check that the set of edges is the same as before, just in different order
let initial_edges: HashSet<_> = initial_edge_order[&vertex_key].iter().collect();
let sorted_edges: HashSet<_> = vertex.outgoing_edges.iter().collect();
assert_eq!(initial_edges, sorted_edges, "Set of edges for vertex {:?} changed after sorting", vertex_key);
}
// Check that all edges still have valid incident vertices and twins
for (edge_key, edge) in &minor_graph.edges {
assert!(minor_graph.vertices.contains_key(edge.incident_vertices[0]), "Edge {:?} has invalid start vertex", edge_key);
assert!(minor_graph.vertices.contains_key(edge.incident_vertices[1]), "Edge {:?} has invalid end vertex", edge_key);
assert!(edge.twin.is_some(), "Edge {:?} should have a twin", edge_key);
let twin = &minor_graph.edges[edge.twin.unwrap()];
assert_eq!(twin.twin.unwrap(), edge_key, "Twin relationship should be symmetrical for edge {:?}", edge_key);
}
}
fn get_incidence_angle(edge: &MinorGraphEdge) -> f64 {
let seg = &edge.segments[0]; // First segment is always the incident one in both fwd and bwd
let (p0, p1) = if edge.direction_flag.forward() {
(seg.sample_at(0.), seg.sample_at(0.1))
} else {
(seg.sample_at(1.), seg.sample_at(1. - 0.1))
};
((p1.y - p0.y).atan2(p1.x - p0.x) + TAU) % TAU
}
#[test]
fn test_path_segment_horizontal_ray_intersection_count() {
let orig_seg = PathSegment::Arc(DVec2::new(24., 10.090978), 13.909023, 13.909023, 0., false, true, DVec2::new(47., 24.));
let point = DVec2::new(37.99, 24.);
eprintln!("Starting test with segment: {:?}", orig_seg);
eprintln!("Test point: {:?}", point);
let count = path_segment_horizontal_ray_intersection_count(&orig_seg, point);
eprintln!("Final intersection count: {}", count);
let expected_count = 1;
assert_eq!(count, expected_count, "Intersection count mismatch");
}
#[test]
fn test_bounding_box_intersects_horizontal_ray() {
let bbox = Aabb {
top: 10.,
right: 40.,
bottom: 30.,
left: 20.,
};
assert!(bounding_box_intersects_horizontal_ray(&bbox, DVec2::new(0., 30.)));
assert!(bounding_box_intersects_horizontal_ray(&bbox, DVec2::new(20., 30.)));
assert!(bounding_box_intersects_horizontal_ray(&bbox, DVec2::new(10., 20.)));
assert!(!bounding_box_intersects_horizontal_ray(&bbox, DVec2::new(30., 40.)));
}
}
|