File size: 7,924 Bytes
2409829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
pub mod decoder;
pub mod demosaicing;
pub mod metadata;
pub mod postprocessing;
pub mod preprocessing;
pub mod processing;
pub mod tiff;
use crate::metadata::identify::CameraModel;
use processing::{Pixel, PixelTransform, RawPixel, RawPixelTransform};
use rawkit_proc_macros::Tag;
use std::io::{Read, Seek};
use thiserror::Error;
use tiff::file::TiffRead;
use tiff::tags::{Compression, ImageLength, ImageWidth, Orientation, StripByteCounts, SubIfd, Tag};
use tiff::values::Transform;
use tiff::{Ifd, TiffError};
pub(crate) const CHANNELS_IN_RGB: usize = 3;
pub(crate) type Histogram = [[usize; 0x2000]; CHANNELS_IN_RGB];
/// The amount of black level to be subtracted from Raw Image.
pub enum SubtractBlack {
/// Don't subtract any value.
None,
/// Subtract a singular value for all pixels in Bayer CFA Grid.
Value(u16),
/// Subtract the appropriate value for pixels in Bayer CFA Grid.
CfaGrid([u16; 4]),
}
/// Represents a Raw Image along with its metadata.
pub struct RawImage {
/// Raw pixel data stored in linear fashion.
pub data: Vec<u16>,
/// Width of the raw image.
pub width: usize,
/// Height of the raw image.
pub height: usize,
/// Bayer CFA pattern used to arrange pixels in [`RawImage::data`].
///
/// It encodes Red, Blue and Green as 0, 1, and 2 respectively.
pub cfa_pattern: [u8; 4],
/// Transformation to be applied to negate the orientation of camera.
pub transform: Transform,
/// The maximum possible value of pixel that the camera sensor could give.
pub maximum: u16,
/// The minimum possible value of pixel that the camera sensor could give.
///
/// Used to subtract the black level from the raw image.
pub black: SubtractBlack,
/// Information regarding the company and model of the camera.
pub camera_model: Option<CameraModel>,
/// White balance specified in the metadata of the raw file.
///
/// It represents the 4 values of CFA Grid which follows the same pattern as [`RawImage::cfa_pattern`].
pub camera_white_balance: Option<[f64; 4]>,
/// White balance of the raw image.
///
/// It is the same as [`RawImage::camera_white_balance`] if the raw file contains the metadata.
/// Otherwise it falls back to calculating the white balance from the color space conversion matrix.
///
/// It represents the 4 values of CFA Grid which follows the same pattern as [`RawImage::cfa_pattern`].
pub white_balance: Option<[f64; 4]>,
/// Color space conversion matrix to convert from camera's color space to sRGB.
pub camera_to_rgb: Option<[[f64; 3]; 3]>,
}
/// Represents the final RGB Image.
pub struct Image<T> {
/// Pixel data stored in a linear fashion.
pub data: Vec<T>,
/// Width of the image.
pub width: usize,
/// Height of the image.
pub height: usize,
/// The number of color channels in the image.
///
/// We can assume this will be 3 for all non-obscure, modern cameras.
/// See <https://github.com/GraphiteEditor/Graphite/pull/1923#discussion_r1725070342> for more information.
pub channels: u8,
/// The transformation required to orient the image correctly.
///
/// This will be [`Transform::Horizontal`] after the transform step is applied.
pub transform: Transform,
}
#[allow(dead_code)]
#[derive(Tag)]
struct ArwIfd {
image_width: ImageWidth,
image_height: ImageLength,
compression: Compression,
strip_byte_counts: StripByteCounts,
}
impl RawImage {
/// Create a [`RawImage`] from an input stream.
///
/// Decodes the contents of `reader` and extracts raw pixel data and metadata.
pub fn decode<R: Read + Seek>(reader: &mut R) -> Result<RawImage, DecoderError> {
let mut file = TiffRead::new(reader)?;
let ifd = Ifd::new_first_ifd(&mut file)?;
let camera_model = metadata::identify::identify_camera_model(&ifd, &mut file).unwrap();
let transform = ifd.get_value::<Orientation, _>(&mut file)?;
let mut raw_image = if camera_model.model == "DSLR-A100" {
decoder::arw1::decode_a100(ifd, &mut file)
} else {
let sub_ifd = ifd.get_value::<SubIfd, _>(&mut file)?;
let arw_ifd = sub_ifd.get_value::<ArwIfd, _>(&mut file)?;
if arw_ifd.compression == 1 {
decoder::uncompressed::decode(sub_ifd, &mut file)
} else if arw_ifd.strip_byte_counts[0] == arw_ifd.image_width * arw_ifd.image_height {
decoder::arw2::decode(sub_ifd, &mut file)
} else {
// TODO: implement for arw 1.
todo!()
}
};
raw_image.camera_model = Some(camera_model);
raw_image.transform = transform;
raw_image.calculate_conversion_matrices();
Ok(raw_image)
}
/// Converts the [`RawImage`] to an [`Image`] with 8 bit resolution for each channel.
///
/// Applies all the processing steps to finally get RGB pixel data.
pub fn process_8bit(self) -> Image<u8> {
let image = self.process_16bit();
Image {
channels: image.channels,
data: image.data.iter().map(|x| (x >> 8) as u8).collect(),
width: image.width,
height: image.height,
transform: image.transform,
}
}
/// Converts the [`RawImage`] to an [`Image`] with 16 bit resolution for each channel.
///
/// Applies all the processing steps to finally get RGB pixel data.
pub fn process_16bit(self) -> Image<u16> {
let subtract_black = self.subtract_black_fn();
let scale_white_balance = self.scale_white_balance_fn();
let scale_to_16bit = self.scale_to_16bit_fn();
let raw_image = self.apply((subtract_black, scale_white_balance, scale_to_16bit));
let convert_to_rgb = raw_image.convert_to_rgb_fn();
let mut record_histogram = raw_image.record_histogram_fn();
let image = raw_image.demosaic_and_apply((convert_to_rgb, &mut record_histogram));
let gamma_correction = image.gamma_correction_fn(&record_histogram.histogram);
if image.transform == Transform::Horizontal {
image.apply(gamma_correction)
} else {
image.transform_and_apply(gamma_correction)
}
}
}
impl RawImage {
pub fn apply(mut self, mut transform: impl RawPixelTransform) -> RawImage {
for (index, value) in self.data.iter_mut().enumerate() {
let pixel = RawPixel {
value: *value,
row: index / self.width,
column: index % self.width,
};
*value = transform.apply(pixel);
}
self
}
pub fn demosaic_and_apply(self, mut transform: impl PixelTransform) -> Image<u16> {
let mut image = vec![0; self.width * self.height * 3];
for Pixel { values, row, column } in self.linear_demosaic_iter().map(|mut pixel| {
pixel.values = transform.apply(pixel);
pixel
}) {
let pixel_index = row * self.width + column;
image[3 * pixel_index..3 * (pixel_index + 1)].copy_from_slice(&values);
}
Image {
channels: 3,
data: image,
width: self.width,
height: self.height,
transform: self.transform,
}
}
}
impl Image<u16> {
pub fn apply(mut self, mut transform: impl PixelTransform) -> Image<u16> {
for (index, values) in self.data.chunks_exact_mut(3).enumerate() {
let pixel = Pixel {
values: values.try_into().unwrap(),
row: index / self.width,
column: index % self.width,
};
values.copy_from_slice(&transform.apply(pixel));
}
self
}
pub fn transform_and_apply(self, mut transform: impl PixelTransform) -> Image<u16> {
let mut image = vec![0; self.width * self.height * 3];
let (width, height, iter) = self.transform_iter();
for Pixel { values, row, column } in iter.map(|mut pixel| {
pixel.values = transform.apply(pixel);
pixel
}) {
let pixel_index = row * width + column;
image[3 * pixel_index..3 * (pixel_index + 1)].copy_from_slice(&values);
}
Image {
channels: 3,
data: image,
width,
height,
transform: Transform::Horizontal,
}
}
}
#[derive(Error, Debug)]
pub enum DecoderError {
#[error("An error occurred when trying to parse the TIFF format")]
TiffError(#[from] TiffError),
#[error("An error occurred when converting integer from one type to another")]
ConversionError(#[from] std::num::TryFromIntError),
#[error("An IO Error ocurred")]
IoError(#[from] std::io::Error),
}
|