use crate::path_segment::PathSegment; const EPS: f64 = 1e-12; pub fn path_cubic_segment_self_intersection(seg: &PathSegment) -> Option<[f64; 2]> { // https://math.stackexchange.com/questions/3931865/self-intersection-of-a-cubic-bezier-interpretation-of-the-solution if let PathSegment::Cubic(p1, p2, p3, p4) = seg { let ax = -p1.x + 3. * p2.x - 3. * p3.x + p4.x; let ay = -p1.y + 3. * p2.y - 3. * p3.y + p4.y; let bx = 3. * p1.x - 6. * p2.x + 3. * p3.x; let by = 3. * p1.y - 6. * p2.y + 3. * p3.y; let cx = -3. * p1.x + 3. * p2.x; let cy = -3. * p1.y + 3. * p2.y; let m = ay * bx - ax * by; let n = ax * cy - ay * cx; let k = (-3. * ax * ax * cy * cy + 6. * ax * ay * cx * cy + 4. * ax * bx * by * cy - 4. * ax * by * by * cx - 3. * ay * ay * cx * cx - 4. * ay * bx * bx * cy + 4. * ay * bx * by * cx) / (ax * ax * by * by - 2. * ax * ay * bx * by + ay * ay * bx * bx); if k < 0. { return None; } let t1 = (n / m + k.sqrt()) / 2.; let t2 = (n / m - k.sqrt()) / 2.; if (EPS..=1. - EPS).contains(&t1) && (EPS..=1. - EPS).contains(&t2) { let mut result = [t1, t2]; result.sort_by(|a, b| a.partial_cmp(b).unwrap()); Some(result) } else { None } } else { None } }