File size: 20,371 Bytes
045e583
3e75e0e
 
2fc9c57
 
71e00ae
82c44f1
71e00ae
 
 
82c44f1
3e75e0e
 
 
2fc9c57
3e75e0e
 
2fc9c57
 
 
 
 
 
 
 
3e75e0e
2fc9c57
 
 
 
 
 
 
3e75e0e
2fc9c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e75e0e
2fc9c57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e75e0e
 
2fc9c57
 
 
 
 
 
 
 
 
3739851
 
 
2fc9c57
 
 
 
 
 
 
 
 
 
 
 
3739851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e00ae
 
3739851
 
 
 
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
 
28d25b7
3739851
71e00ae
3739851
71e00ae
 
 
 
 
 
82c44f1
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
3739851
 
 
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
71e00ae
 
 
 
 
3739851
71e00ae
 
 
 
 
 
 
82c44f1
71e00ae
 
 
 
 
 
82c44f1
 
71e00ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3739851
71e00ae
 
 
 
 
82c44f1
 
71e00ae
 
 
 
3739851
 
71e00ae
3739851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import os
import subprocess
import sys
import importlib.util
import time

# Set environment variables
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "1"
os.environ["TRANSFORMERS_COMPILER_DISABLED"] = "1"

# Function to install required packages
def install_required_packages():
    required_packages = [
        "warmup_scheduler",
        "torchtools"
    ]
    
    github_repos = {
        "warmup_scheduler": "git+https://github.com/ildoonet/pytorch-gradual-warmup-lr.git",
        "torchtools": "git+https://github.com/pabloppp/pytorch-tools.git"
    }
    
    missing_packages = []
    
    # First check which packages need to be installed
    for package in required_packages:
        if importlib.util.find_spec(package) is None:
            missing_packages.append(package)
            print(f"{package} needs to be installed")
    
    # Install missing packages
    for package in missing_packages:
        print(f"Installing {package}...")
        try:
            if package in github_repos:
                subprocess.check_call([
                    sys.executable, "-m", "pip", "install", github_repos[package]
                ])
            else:
                subprocess.check_call([
                    sys.executable, "-m", "pip", "install", package
                ])
            print(f"{package} installed successfully")
            # Wait a moment to ensure the package is available for import
            time.sleep(1)
        except subprocess.CalledProcessError as e:
            print(f"Failed to install {package}: {e}")
            
    # If there were any packages installed, try to force a refresh of sys.modules
    if missing_packages:
        print("Refreshing Python module cache...")
        for package in missing_packages:
            if package in sys.modules:
                del sys.modules[package]

# Create patches for missing modules if they can't be installed
def create_module_patches():
    # Create a patch for torchtools.transforms if it doesn't exist
    if importlib.util.find_spec("torchtools") is None or importlib.util.find_spec("torchtools.transforms") is None:
        print("Creating patch for torchtools.transforms...")
        
        # Create the directory structure
        os.makedirs("torchtools/transforms", exist_ok=True)
        
        # Create __init__.py files
        with open("torchtools/__init__.py", "w") as f:
            f.write("# Patch for torchtools\n")
        
        # Create a simplified SmartCrop class
        with open("torchtools/transforms/__init__.py", "w") as f:
            f.write("""# Patch for torchtools.transforms
import torch
import torch.nn.functional as F

class SmartCrop:
    def __init__(self, size=None, scale=None, preserve_aspect_ratio=True):
        self.size = size
        self.scale = scale
        self.preserve_aspect_ratio = preserve_aspect_ratio
    
    def __call__(self, image):
        # Basic placeholder implementation that resizes the image
        # For actual smart cropping, a more complex implementation would be needed
        if self.size is not None:
            return F.interpolate(image.unsqueeze(0), size=self.size, mode='bilinear', align_corners=False).squeeze(0)
        elif self.scale is not None:
            h, w = image.shape[-2:]
            new_h, new_w = int(h * self.scale), int(w * self.scale)
            return F.interpolate(image.unsqueeze(0), size=(new_h, new_w), mode='bilinear', align_corners=False).squeeze(0)
        return image
""")
        
        # Add the patch directory to the system path
        sys.path.insert(0, os.path.abspath('./'))
        print("Torchtools patch created successfully")

# Install required packages
print("Checking and installing required packages...")
install_required_packages()

# Create patch modules for any missing dependencies
print("Creating patches for any missing modules...")
create_module_patches()

# Give a moment for the system to register newly installed packages
time.sleep(2)

# Now continue with the imports
print("Importing the required modules...")
import yaml
import torch
sys.path.append(os.path.abspath('./'))

# Try importing the modules
try:
    from inference.utils import *
    from train import WurstCoreB
    from gdf import DDPMSampler
    from train import WurstCore_t2i as WurstCoreC
    print("Successfully imported all required modules!")
except ImportError as e:
    print(f"Warning: Import error: {e}")
    print("Continuing with the application setup...")

import numpy as np
import random
import argparse
import gradio as gr
import spaces
from huggingface_hub import hf_hub_url
from huggingface_hub import hf_hub_download

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--height', type=int, default=2560, help='image height')
    parser.add_argument('--width', type=int, default=5120, help='image width')
    parser.add_argument('--seed', type=int, default=123, help='random seed')
    parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
    parser.add_argument('--config_c', type=str, 
    default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
    parser.add_argument('--config_b', type=str, 
    default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
    parser.add_argument('--prompt', type=str,
     default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
    parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
    parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
    parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
    parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
    args = parser.parse_args()
    return args

def clear_image():
    return None

def load_message(height, width, seed, prompt, args, stage_a_tiled):
    args.height = height
    args.width = width
    args.seed = seed
    args.prompt = prompt + ' rich detail, 4k, high quality'
    args.stage_a_tiled = stage_a_tiled
    return args

@spaces.GPU(duration=120)
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
    global args
    
    args = load_message(height, width, seed, prompt, args, stage_a_tiled)
    torch.manual_seed(args.seed)
    random.seed(args.seed) 
    np.random.seed(args.seed)
    dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float

    captions = [args.prompt] * args.num_image
    height, width = args.height, args.width
    batch_size = 1 
    height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
    stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
    stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
   
    # Stage C Parameters
    extras.sampling_configs['cfg'] = 4
    extras.sampling_configs['shift'] = 1
    extras.sampling_configs['timesteps'] = 20
    extras.sampling_configs['t_start'] = 1.0
    extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
    
    # Stage B Parameters
    extras_b.sampling_configs['cfg'] = 1.1
    extras_b.sampling_configs['shift'] = 1
    extras_b.sampling_configs['timesteps'] = 10
    extras_b.sampling_configs['t_start'] = 1.0

    for _, caption in enumerate(captions):
        batch = {'captions': [caption] * batch_size}
        conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
        unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
        
        with torch.no_grad():
            models.generator.cuda()
            print('STAGE C GENERATION***************************')
            with torch.cuda.amp.autocast(dtype=dtype):
                sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
            
            models.generator.cpu()
            torch.cuda.empty_cache()
            
            conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
            unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
            conditions_b['effnet'] = sampled_c
            unconditions_b['effnet'] = torch.zeros_like(sampled_c)
            print('STAGE B + A DECODING***************************')
            
            with torch.cuda.amp.autocast(dtype=dtype):
                sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
            
            torch.cuda.empty_cache()
            imgs = show_images(sampled)
                    
    return imgs[0]

css = """
footer {
    visibility: hidden;
}

/* Main container styling */
#col-container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 20px;
    background-color: #f8f9fa;
    border-radius: 15px;
    box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
}

/* Header styling */
h1 {
    text-align: center;
    color: #ff6b00;
    font-size: 2.5rem;
    margin-bottom: 20px;
    font-weight: 700;
    text-shadow: 1px 1px 2px rgba(0,0,0,0.1);
}

/* Button styling */
button.primary {
    background-color: #ff6b00 !important;
    color: white !important;
    border: none !important;
    border-radius: 8px !important;
    padding: 10px 20px !important;
    font-weight: 600 !important;
    transition: all 0.3s ease !important;
}

button.primary:hover {
    background-color: #e55f00 !important;
    transform: translateY(-2px);
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2) !important;
}

/* Input field styling */
input[type="text"] {
    border-radius: 8px !important;
    border: 2px solid #ddd !important;
    padding: 12px !important;
    font-size: 1rem !important;
    transition: all 0.3s ease !important;
}

input[type="text"]:focus {
    border-color: #ff6b00 !important;
    box-shadow: 0 0 0 3px rgba(255, 107, 0, 0.2) !important;
}

/* Output image container */
.output-image {
    border-radius: 12px;
    overflow: hidden;
    box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
    margin: 20px 0;
    transition: all 0.3s ease;
}

.output-image:hover {
    transform: scale(1.02);
}

/* Accordion styling */
.accordion {
    border-radius: 10px !important;
    overflow: hidden !important;
    margin: 15px 0 !important;
    border: 1px solid #eaeaea !important;
}

/* Example gallery */
.examples-gallery {
    display: grid;
    grid-template-columns: repeat(auto-fill, minmax(300px, 1fr));
    gap: 15px;
    margin-top: 20px;
}

.example-item {
    background-color: white;
    border-radius: 10px;
    padding: 10px;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
    transition: all 0.3s ease;
}

.example-item:hover {
    transform: translateY(-5px);
    box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2);
}

/* Loading animation */
@keyframes pulse {
    0% { opacity: 0.6; }
    50% { opacity: 1; }
    100% { opacity: 0.6; }
}

.loading {
    animation: pulse 1.5s infinite;
    text-align: center;
    padding: 20px;
    color: #ff6b00;
    font-weight: bold;
}
"""

with gr.Blocks(theme="soft", css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("<h1>UHD Image Generator (5120×4096)</h1>")
        
        with gr.Group():
            with gr.Row():
                with gr.Column(scale=5):
                    prompt = gr.Textbox(
                        label="Text Prompt",
                        max_lines=2,
                        placeholder="Enter your prompt (e.g., 'A majestic mountain landscape with snow')",
                        elem_id="prompt-input"
                    )
                
                with gr.Column(scale=1):
                    generate_button = gr.Button("Generate Image", variant="primary", elem_id="generate-btn")
                    clear_button = gr.Button("Clear", elem_id="clear-btn")
        
        # Loading indicator
        with gr.Row(visible=False) as loading_indicator:
            gr.Markdown('<div class="loading">Generating your ultra high resolution image... This may take a minute...</div>')
        
        # Output image with nicer styling
        output_img = gr.Image(label="Generated Image", elem_classes="output-image")
        
        with gr.Accordion("Advanced Settings", open=False):
            with gr.Row():
                with gr.Column():
                    seed = gr.Number(
                        label="Random Seed",
                        value=123,
                        step=1,
                        minimum=0,
                    )
                    
                    cfg = gr.Slider(
                        label="CFG Scale (Creativity vs. Prompt Adherence)",
                        minimum=3,
                        maximum=10,
                        step=0.1,
                        value=4
                    )
                
                with gr.Column():
                    with gr.Row():
                        width = gr.Slider(
                            label="Width",
                            minimum=1536,
                            maximum=5120,
                            step=32,
                            value=4096
                        )
                        
                        height = gr.Slider(
                            label="Height",
                            minimum=1536,
                            maximum=4096,
                            step=32,
                            value=2304
                        )
                    
                    timesteps = gr.Slider(
                        label="Timesteps (Quality vs. Speed)",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=20
                    )
                    
                    stage_a_tiled = gr.Checkbox(
                        label="Use Tiled Decoding (Lower Memory Usage)",
                        value=False
                    )
        
        # Aspect ratio presets
        with gr.Row():
            gr.Markdown("### Quick Aspect Ratio Presets")
            
        with gr.Row():
            preset_landscape = gr.Button("Landscape (16:9)", size="sm")
            preset_portrait = gr.Button("Portrait (9:16)", size="sm")
            preset_square = gr.Button("Square (1:1)", size="sm")
            preset_ultrawide = gr.Button("Ultrawide (21:9)", size="sm")
            
        # Examples with better organization
        gr.Markdown("### Example Prompts")
        with gr.Row():
            example_tabs = gr.Tabs([
                gr.TabItem("Nature", gr.Examples(
                    examples=[
                        "A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
                        "A majestic view of snow-covered mountains with a calm lake against a blue sky background",
                    ],
                    inputs=[prompt],
                    outputs=[output_img],
                )),
                gr.TabItem("Animals", gr.Examples(
                    examples=[
                        "A crocodile wearing a sweater",
                        "A cute golden retriever puppy chasing a red ball on a green lawn",
                    ],
                    inputs=[prompt],
                    outputs=[output_img],
                )),
                gr.TabItem("Anime", gr.Examples(
                    examples=[
                        "A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her.",
                    ],
                    inputs=[prompt],
                    outputs=[output_img],
                )),
                gr.TabItem("Architecture", gr.Examples(
                    examples=[
                        "A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
                    ],
                    inputs=[prompt],
                    outputs=[output_img],
                )),
            ])

        # Function to set aspect ratio presets
        def set_landscape():
            return 5120, 2880
            
        def set_portrait():
            return 2880, 4096
            
        def set_square():
            return 3584, 3584
            
        def set_ultrawide():
            return 5120, 2160
            
        # Connect buttons to functions
        preset_landscape.click(set_landscape, outputs=[width, height])
        preset_portrait.click(set_portrait, outputs=[width, height])
        preset_square.click(set_square, outputs=[width, height])
        preset_ultrawide.click(set_ultrawide, outputs=[width, height])
        
        # Connect events
        generate_button.click(
            lambda: gr.update(visible=True),
            outputs=[loading_indicator]
        ).then(
            get_image,
            inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled],
            outputs=[output_img]
        ).then(
            lambda: gr.update(visible=False),
            outputs=[loading_indicator]
        )
        
        clear_button.click(clear_image, inputs=[], outputs=[output_img])

def download_with_wget(url, save_path):
    try:
        subprocess.run(['wget', url, '-O', save_path], check=True)
        print(f"Downloaded to {save_path}")
    except subprocess.CalledProcessError as e:
        print(f"Error downloading file: {e}")

def download_model():
    urls = [
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors', 
        'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors', 
    ]
    for file_url in urls:
        hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
    hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
    
if __name__ == "__main__":
    args = parse_args()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    download_model()
    config_file = args.config_c
    with open(config_file, "r", encoding="utf-8") as file:
        loaded_config = yaml.safe_load(file)
    
    core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
    
    # SETUP STAGE B
    config_file_b = args.config_b
    with open(config_file_b, "r", encoding="utf-8") as file:
        config_file_b = yaml.safe_load(file)
        
    core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
    
    extras = core.setup_extras_pre()
    models = core.setup_models(extras)
    models.generator.eval().requires_grad_(False)
    print("STAGE C READY")
    
    extras_b = core_b.setup_extras_pre()
    models_b = core_b.setup_models(extras_b, skip_clip=True)
    models_b = WurstCoreB.Models(
       **{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
    )
    models_b.generator.bfloat16().eval().requires_grad_(False)
    print("STAGE B READY")
    
    pretrained_path = args.pretrained_path    
    sdd = torch.load(pretrained_path, map_location='cpu')
    collect_sd = {}
    for k, v in sdd.items():
        collect_sd[k[7:]] = v
    
    models.train_norm.load_state_dict(collect_sd)
    models.generator.eval()
    models.train_norm.eval()
    
    demo.launch(debug=True, share=True)