Spaces:
Runtime error
Runtime error
Update train/train_t2i.py
Browse files- train/train_t2i.py +806 -807
train/train_t2i.py
CHANGED
|
@@ -1,807 +1,806 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import json
|
| 3 |
-
import yaml
|
| 4 |
-
import torchvision
|
| 5 |
-
from torch import nn, optim
|
| 6 |
-
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
| 7 |
-
from warmup_scheduler import GradualWarmupScheduler
|
| 8 |
-
import torch.multiprocessing as mp
|
| 9 |
-
import numpy as np
|
| 10 |
-
import os
|
| 11 |
-
import sys
|
| 12 |
-
sys.path.append(os.path.abspath('./'))
|
| 13 |
-
from dataclasses import dataclass
|
| 14 |
-
from torch.distributed import init_process_group, destroy_process_group, barrier
|
| 15 |
-
from gdf import GDF_dual_fixlrt as GDF
|
| 16 |
-
from gdf import EpsilonTarget, CosineSchedule
|
| 17 |
-
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
| 18 |
-
from torchtools.transforms import SmartCrop
|
| 19 |
-
from fractions import Fraction
|
| 20 |
-
from modules.effnet import EfficientNetEncoder
|
| 21 |
-
|
| 22 |
-
from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
|
| 23 |
-
from modules.previewer import Previewer
|
| 24 |
-
from core.data import Bucketeer
|
| 25 |
-
from train.base import DataCore, TrainingCore
|
| 26 |
-
from tqdm import tqdm
|
| 27 |
-
from core import WarpCore
|
| 28 |
-
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
|
| 29 |
-
|
| 30 |
-
from accelerate import init_empty_weights
|
| 31 |
-
from accelerate.utils import set_module_tensor_to_device
|
| 32 |
-
from contextlib import contextmanager
|
| 33 |
-
from train.dist_core import *
|
| 34 |
-
import glob
|
| 35 |
-
from torch.utils.data import DataLoader, Dataset
|
| 36 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 37 |
-
from torch.utils.data.distributed import DistributedSampler
|
| 38 |
-
from PIL import Image
|
| 39 |
-
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary
|
| 40 |
-
from core.utils import Base
|
| 41 |
-
from modules.common_ckpt import LayerNorm2d, GlobalResponseNorm
|
| 42 |
-
import torch.nn.functional as F
|
| 43 |
-
import functools
|
| 44 |
-
import math
|
| 45 |
-
import copy
|
| 46 |
-
import random
|
| 47 |
-
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken
|
| 48 |
-
Image.MAX_IMAGE_PIXELS = None
|
| 49 |
-
torch.manual_seed(23)
|
| 50 |
-
random.seed(23)
|
| 51 |
-
np.random.seed(23)
|
| 52 |
-
#7978026
|
| 53 |
-
|
| 54 |
-
class Null_Model(torch.nn.Module):
|
| 55 |
-
def __init__(self):
|
| 56 |
-
super().__init__()
|
| 57 |
-
def forward(self, x):
|
| 58 |
-
pass
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
def identity(x):
|
| 64 |
-
if isinstance(x, bytes):
|
| 65 |
-
x = x.decode('utf-8')
|
| 66 |
-
return x
|
| 67 |
-
def check_nan_inmodel(model, meta=''):
|
| 68 |
-
for name, param in model.named_parameters():
|
| 69 |
-
if torch.isnan(param).any():
|
| 70 |
-
print(f"nan detected in {name}", meta)
|
| 71 |
-
return True
|
| 72 |
-
print('no nan', meta)
|
| 73 |
-
return False
|
| 74 |
-
class mydist_dataset(Dataset):
|
| 75 |
-
def __init__(self, rootpath, img_processor=None):
|
| 76 |
-
|
| 77 |
-
self.img_pathlist = glob.glob(os.path.join(rootpath, '*', '*.jpg'))
|
| 78 |
-
self.img_processor = img_processor
|
| 79 |
-
self.length = len( self.img_pathlist)
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
def __getitem__(self, idx):
|
| 84 |
-
|
| 85 |
-
imgpath = self.img_pathlist[idx]
|
| 86 |
-
json_file = imgpath.replace('.jpg', '.json')
|
| 87 |
-
|
| 88 |
-
with open(json_file, 'r') as file:
|
| 89 |
-
info = json.load(file)
|
| 90 |
-
txt = info['caption']
|
| 91 |
-
if txt is None:
|
| 92 |
-
txt = ' '
|
| 93 |
-
try:
|
| 94 |
-
img = Image.open(imgpath).convert('RGB')
|
| 95 |
-
w, h = img.size
|
| 96 |
-
if self.img_processor is not None:
|
| 97 |
-
img = self.img_processor(img)
|
| 98 |
-
|
| 99 |
-
except:
|
| 100 |
-
print('exception', imgpath)
|
| 101 |
-
return self.__getitem__(random.randint(0, self.length -1 ) )
|
| 102 |
-
return dict(captions=txt, images=img)
|
| 103 |
-
def __len__(self):
|
| 104 |
-
return self.length
|
| 105 |
-
|
| 106 |
-
class WurstCore(TrainingCore, DataCore, WarpCore):
|
| 107 |
-
@dataclass(frozen=True)
|
| 108 |
-
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
|
| 109 |
-
# TRAINING PARAMS
|
| 110 |
-
lr: float = EXPECTED_TRAIN
|
| 111 |
-
warmup_updates: int = EXPECTED_TRAIN
|
| 112 |
-
dtype: str = None
|
| 113 |
-
|
| 114 |
-
# MODEL VERSION
|
| 115 |
-
model_version: str = EXPECTED # 3.6B or 1B
|
| 116 |
-
clip_image_model_name: str = 'openai/clip-vit-large-patch14'
|
| 117 |
-
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
|
| 118 |
-
|
| 119 |
-
# CHECKPOINT PATHS
|
| 120 |
-
effnet_checkpoint_path: str = EXPECTED
|
| 121 |
-
previewer_checkpoint_path: str = EXPECTED
|
| 122 |
-
|
| 123 |
-
generator_checkpoint_path: str = None
|
| 124 |
-
|
| 125 |
-
# gdf customization
|
| 126 |
-
adaptive_loss_weight: str = None
|
| 127 |
-
use_ddp: bool=EXPECTED
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
@dataclass(frozen=True)
|
| 131 |
-
class Data(Base):
|
| 132 |
-
dataset: Dataset = EXPECTED
|
| 133 |
-
dataloader: DataLoader = EXPECTED
|
| 134 |
-
iterator: any = EXPECTED
|
| 135 |
-
sampler: DistributedSampler = EXPECTED
|
| 136 |
-
|
| 137 |
-
@dataclass(frozen=True)
|
| 138 |
-
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
|
| 139 |
-
effnet: nn.Module = EXPECTED
|
| 140 |
-
previewer: nn.Module = EXPECTED
|
| 141 |
-
train_norm: nn.Module = EXPECTED
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
@dataclass(frozen=True)
|
| 145 |
-
class Schedulers(WarpCore.Schedulers):
|
| 146 |
-
generator: any = None
|
| 147 |
-
|
| 148 |
-
@dataclass(frozen=True)
|
| 149 |
-
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
|
| 150 |
-
gdf: GDF = EXPECTED
|
| 151 |
-
sampling_configs: dict = EXPECTED
|
| 152 |
-
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
|
| 153 |
-
|
| 154 |
-
info: TrainingCore.Info
|
| 155 |
-
config: Config
|
| 156 |
-
|
| 157 |
-
def setup_extras_pre(self) -> Extras:
|
| 158 |
-
gdf = GDF(
|
| 159 |
-
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
|
| 160 |
-
input_scaler=VPScaler(), target=EpsilonTarget(),
|
| 161 |
-
noise_cond=CosineTNoiseCond(),
|
| 162 |
-
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
|
| 163 |
-
)
|
| 164 |
-
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}
|
| 165 |
-
|
| 166 |
-
if self.info.adaptive_loss is not None:
|
| 167 |
-
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
|
| 168 |
-
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
|
| 169 |
-
|
| 170 |
-
effnet_preprocess = torchvision.transforms.Compose([
|
| 171 |
-
torchvision.transforms.Normalize(
|
| 172 |
-
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
|
| 173 |
-
)
|
| 174 |
-
])
|
| 175 |
-
|
| 176 |
-
clip_preprocess = torchvision.transforms.Compose([
|
| 177 |
-
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
|
| 178 |
-
torchvision.transforms.CenterCrop(224),
|
| 179 |
-
torchvision.transforms.Normalize(
|
| 180 |
-
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
|
| 181 |
-
)
|
| 182 |
-
])
|
| 183 |
-
|
| 184 |
-
if self.config.training:
|
| 185 |
-
transforms = torchvision.transforms.Compose([
|
| 186 |
-
torchvision.transforms.ToTensor(),
|
| 187 |
-
torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
|
| 188 |
-
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
|
| 189 |
-
])
|
| 190 |
-
else:
|
| 191 |
-
transforms = None
|
| 192 |
-
|
| 193 |
-
return self.Extras(
|
| 194 |
-
gdf=gdf,
|
| 195 |
-
sampling_configs=sampling_configs,
|
| 196 |
-
transforms=transforms,
|
| 197 |
-
effnet_preprocess=effnet_preprocess,
|
| 198 |
-
clip_preprocess=clip_preprocess
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
|
| 202 |
-
eval_image_embeds=False, return_fields=None):
|
| 203 |
-
conditions = super().get_conditions(
|
| 204 |
-
batch, models, extras, is_eval, is_unconditional,
|
| 205 |
-
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
|
| 206 |
-
)
|
| 207 |
-
return conditions
|
| 208 |
-
|
| 209 |
-
def setup_models(self, extras: Extras) -> Models: # configure model
|
| 210 |
-
|
| 211 |
-
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16
|
| 212 |
-
|
| 213 |
-
# EfficientNet encoderin
|
| 214 |
-
effnet = EfficientNetEncoder()
|
| 215 |
-
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
|
| 216 |
-
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
|
| 217 |
-
effnet.eval().requires_grad_(False).to(self.device)
|
| 218 |
-
del effnet_checkpoint
|
| 219 |
-
|
| 220 |
-
# Previewer
|
| 221 |
-
previewer = Previewer()
|
| 222 |
-
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
|
| 223 |
-
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
|
| 224 |
-
previewer.eval().requires_grad_(False).to(self.device)
|
| 225 |
-
del previewer_checkpoint
|
| 226 |
-
|
| 227 |
-
@contextmanager
|
| 228 |
-
def dummy_context():
|
| 229 |
-
yield None
|
| 230 |
-
|
| 231 |
-
loading_context = dummy_context if self.config.training else init_empty_weights
|
| 232 |
-
|
| 233 |
-
# Diffusion models
|
| 234 |
-
with loading_context():
|
| 235 |
-
generator_ema = None
|
| 236 |
-
if self.config.model_version == '3.6B':
|
| 237 |
-
generator = StageC()
|
| 238 |
-
if self.config.ema_start_iters is not None: # default setting
|
| 239 |
-
generator_ema = StageC()
|
| 240 |
-
elif self.config.model_version == '1B':
|
| 241 |
-
print('in line 155 1b light model', self.config.model_version )
|
| 242 |
-
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
| 243 |
-
|
| 244 |
-
if self.config.ema_start_iters is not None and self.config.training:
|
| 245 |
-
generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
| 246 |
-
else:
|
| 247 |
-
raise ValueError(f"Unknown model version {self.config.model_version}")
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
if loading_context is dummy_context:
|
| 252 |
-
generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path))
|
| 253 |
-
else:
|
| 254 |
-
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
|
| 255 |
-
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
|
| 256 |
-
|
| 257 |
-
generator._init_extra_parameter()
|
| 258 |
-
generator = generator.to(torch.bfloat16).to(self.device)
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
train_norm = nn.ModuleList()
|
| 262 |
-
cnt_norm = 0
|
| 263 |
-
for mm in generator.modules():
|
| 264 |
-
if isinstance(mm, GlobalResponseNorm):
|
| 265 |
-
|
| 266 |
-
train_norm.append(Null_Model())
|
| 267 |
-
cnt_norm += 1
|
| 268 |
-
|
| 269 |
-
train_norm.append(generator.agg_net)
|
| 270 |
-
train_norm.append(generator.agg_net_up)
|
| 271 |
-
total = sum([ param.nelement() for param in train_norm.parameters()])
|
| 272 |
-
print('Trainable parameter', total / 1048576)
|
| 273 |
-
|
| 274 |
-
if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors')):
|
| 275 |
-
sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors'), map_location='cpu')
|
| 276 |
-
collect_sd = {}
|
| 277 |
-
for k, v in sdd.items():
|
| 278 |
-
collect_sd[k[7:]] = v
|
| 279 |
-
train_norm.load_state_dict(collect_sd, strict=True)
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
train_norm.to(self.device).train().requires_grad_(True)
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
generator_ema.
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
params
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
scheduler
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
self.
|
| 394 |
-
self.
|
| 395 |
-
self.
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
os.environ['
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
)
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
self.
|
| 409 |
-
self.
|
| 410 |
-
self.
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
shape_lr
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
self.
|
| 496 |
-
self.
|
| 497 |
-
self.
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
torch.backends.
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
print()
|
| 510 |
-
print(
|
| 511 |
-
print(
|
| 512 |
-
print(
|
| 513 |
-
print()
|
| 514 |
-
print(
|
| 515 |
-
print(
|
| 516 |
-
print(
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
extras
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
data
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
print(
|
| 529 |
-
print(
|
| 530 |
-
print(
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
models
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
print(
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
print(
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
optimizers
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
print(
|
| 549 |
-
print(
|
| 550 |
-
print(
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
schedulers
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
print(
|
| 557 |
-
print(
|
| 558 |
-
print(
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
post_extras
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
print("
|
| 566 |
-
print(
|
| 567 |
-
print(
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
print()
|
| 581 |
-
print(
|
| 582 |
-
print()
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
'
|
| 630 |
-
'
|
| 631 |
-
'
|
| 632 |
-
'
|
| 633 |
-
'
|
| 634 |
-
'
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
'
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
models.
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
images
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
torch.cat([i for i in
|
| 731 |
-
torch.cat([i for i in
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
-
|
| 736 |
-
torch.cat([i for i in
|
| 737 |
-
torch.cat([i for i in
|
| 738 |
-
|
| 739 |
-
|
| 740 |
-
|
| 741 |
-
torchvision.utils.save_image(
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
|
| 745 |
-
models.
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
|
| 792 |
-
|
| 793 |
-
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
# os.environ["
|
| 797 |
-
#
|
| 798 |
-
#
|
| 799 |
-
|
| 800 |
-
#
|
| 801 |
-
|
| 802 |
-
|
| 803 |
-
|
| 804 |
-
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, )
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import json
|
| 3 |
+
import yaml
|
| 4 |
+
import torchvision
|
| 5 |
+
from torch import nn, optim
|
| 6 |
+
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
| 7 |
+
from warmup_scheduler import GradualWarmupScheduler
|
| 8 |
+
import torch.multiprocessing as mp
|
| 9 |
+
import numpy as np
|
| 10 |
+
import os
|
| 11 |
+
import sys
|
| 12 |
+
sys.path.append(os.path.abspath('./'))
|
| 13 |
+
from dataclasses import dataclass
|
| 14 |
+
from torch.distributed import init_process_group, destroy_process_group, barrier
|
| 15 |
+
from gdf import GDF_dual_fixlrt as GDF
|
| 16 |
+
from gdf import EpsilonTarget, CosineSchedule
|
| 17 |
+
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
| 18 |
+
from torchtools.transforms import SmartCrop
|
| 19 |
+
from fractions import Fraction
|
| 20 |
+
from modules.effnet import EfficientNetEncoder
|
| 21 |
+
|
| 22 |
+
from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
|
| 23 |
+
from modules.previewer import Previewer
|
| 24 |
+
from core.data import Bucketeer
|
| 25 |
+
from train.base import DataCore, TrainingCore
|
| 26 |
+
from tqdm import tqdm
|
| 27 |
+
from core import WarpCore
|
| 28 |
+
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
|
| 29 |
+
|
| 30 |
+
from accelerate import init_empty_weights
|
| 31 |
+
from accelerate.utils import set_module_tensor_to_device
|
| 32 |
+
from contextlib import contextmanager
|
| 33 |
+
from train.dist_core import *
|
| 34 |
+
import glob
|
| 35 |
+
from torch.utils.data import DataLoader, Dataset
|
| 36 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
| 37 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 38 |
+
from PIL import Image
|
| 39 |
+
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary
|
| 40 |
+
from core.utils import Base
|
| 41 |
+
from modules.common_ckpt import LayerNorm2d, GlobalResponseNorm
|
| 42 |
+
import torch.nn.functional as F
|
| 43 |
+
import functools
|
| 44 |
+
import math
|
| 45 |
+
import copy
|
| 46 |
+
import random
|
| 47 |
+
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken
|
| 48 |
+
Image.MAX_IMAGE_PIXELS = None
|
| 49 |
+
torch.manual_seed(23)
|
| 50 |
+
random.seed(23)
|
| 51 |
+
np.random.seed(23)
|
| 52 |
+
#7978026
|
| 53 |
+
|
| 54 |
+
class Null_Model(torch.nn.Module):
|
| 55 |
+
def __init__(self):
|
| 56 |
+
super().__init__()
|
| 57 |
+
def forward(self, x):
|
| 58 |
+
pass
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def identity(x):
|
| 64 |
+
if isinstance(x, bytes):
|
| 65 |
+
x = x.decode('utf-8')
|
| 66 |
+
return x
|
| 67 |
+
def check_nan_inmodel(model, meta=''):
|
| 68 |
+
for name, param in model.named_parameters():
|
| 69 |
+
if torch.isnan(param).any():
|
| 70 |
+
print(f"nan detected in {name}", meta)
|
| 71 |
+
return True
|
| 72 |
+
print('no nan', meta)
|
| 73 |
+
return False
|
| 74 |
+
class mydist_dataset(Dataset):
|
| 75 |
+
def __init__(self, rootpath, img_processor=None):
|
| 76 |
+
|
| 77 |
+
self.img_pathlist = glob.glob(os.path.join(rootpath, '*', '*.jpg'))
|
| 78 |
+
self.img_processor = img_processor
|
| 79 |
+
self.length = len( self.img_pathlist)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def __getitem__(self, idx):
|
| 84 |
+
|
| 85 |
+
imgpath = self.img_pathlist[idx]
|
| 86 |
+
json_file = imgpath.replace('.jpg', '.json')
|
| 87 |
+
|
| 88 |
+
with open(json_file, 'r') as file:
|
| 89 |
+
info = json.load(file)
|
| 90 |
+
txt = info['caption']
|
| 91 |
+
if txt is None:
|
| 92 |
+
txt = ' '
|
| 93 |
+
try:
|
| 94 |
+
img = Image.open(imgpath).convert('RGB')
|
| 95 |
+
w, h = img.size
|
| 96 |
+
if self.img_processor is not None:
|
| 97 |
+
img = self.img_processor(img)
|
| 98 |
+
|
| 99 |
+
except:
|
| 100 |
+
print('exception', imgpath)
|
| 101 |
+
return self.__getitem__(random.randint(0, self.length -1 ) )
|
| 102 |
+
return dict(captions=txt, images=img)
|
| 103 |
+
def __len__(self):
|
| 104 |
+
return self.length
|
| 105 |
+
|
| 106 |
+
class WurstCore(TrainingCore, DataCore, WarpCore):
|
| 107 |
+
@dataclass(frozen=True)
|
| 108 |
+
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
|
| 109 |
+
# TRAINING PARAMS
|
| 110 |
+
lr: float = EXPECTED_TRAIN
|
| 111 |
+
warmup_updates: int = EXPECTED_TRAIN
|
| 112 |
+
dtype: str = None
|
| 113 |
+
|
| 114 |
+
# MODEL VERSION
|
| 115 |
+
model_version: str = EXPECTED # 3.6B or 1B
|
| 116 |
+
clip_image_model_name: str = 'openai/clip-vit-large-patch14'
|
| 117 |
+
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
|
| 118 |
+
|
| 119 |
+
# CHECKPOINT PATHS
|
| 120 |
+
effnet_checkpoint_path: str = EXPECTED
|
| 121 |
+
previewer_checkpoint_path: str = EXPECTED
|
| 122 |
+
|
| 123 |
+
generator_checkpoint_path: str = None
|
| 124 |
+
|
| 125 |
+
# gdf customization
|
| 126 |
+
adaptive_loss_weight: str = None
|
| 127 |
+
use_ddp: bool=EXPECTED
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@dataclass(frozen=True)
|
| 131 |
+
class Data(Base):
|
| 132 |
+
dataset: Dataset = EXPECTED
|
| 133 |
+
dataloader: DataLoader = EXPECTED
|
| 134 |
+
iterator: any = EXPECTED
|
| 135 |
+
sampler: DistributedSampler = EXPECTED
|
| 136 |
+
|
| 137 |
+
@dataclass(frozen=True)
|
| 138 |
+
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
|
| 139 |
+
effnet: nn.Module = EXPECTED
|
| 140 |
+
previewer: nn.Module = EXPECTED
|
| 141 |
+
train_norm: nn.Module = EXPECTED
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
@dataclass(frozen=True)
|
| 145 |
+
class Schedulers(WarpCore.Schedulers):
|
| 146 |
+
generator: any = None
|
| 147 |
+
|
| 148 |
+
@dataclass(frozen=True)
|
| 149 |
+
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
|
| 150 |
+
gdf: GDF = EXPECTED
|
| 151 |
+
sampling_configs: dict = EXPECTED
|
| 152 |
+
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
|
| 153 |
+
|
| 154 |
+
info: TrainingCore.Info
|
| 155 |
+
config: Config
|
| 156 |
+
|
| 157 |
+
def setup_extras_pre(self) -> Extras:
|
| 158 |
+
gdf = GDF(
|
| 159 |
+
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
|
| 160 |
+
input_scaler=VPScaler(), target=EpsilonTarget(),
|
| 161 |
+
noise_cond=CosineTNoiseCond(),
|
| 162 |
+
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
|
| 163 |
+
)
|
| 164 |
+
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}
|
| 165 |
+
|
| 166 |
+
if self.info.adaptive_loss is not None:
|
| 167 |
+
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
|
| 168 |
+
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
|
| 169 |
+
|
| 170 |
+
effnet_preprocess = torchvision.transforms.Compose([
|
| 171 |
+
torchvision.transforms.Normalize(
|
| 172 |
+
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
|
| 173 |
+
)
|
| 174 |
+
])
|
| 175 |
+
|
| 176 |
+
clip_preprocess = torchvision.transforms.Compose([
|
| 177 |
+
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
|
| 178 |
+
torchvision.transforms.CenterCrop(224),
|
| 179 |
+
torchvision.transforms.Normalize(
|
| 180 |
+
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
|
| 181 |
+
)
|
| 182 |
+
])
|
| 183 |
+
|
| 184 |
+
if self.config.training:
|
| 185 |
+
transforms = torchvision.transforms.Compose([
|
| 186 |
+
torchvision.transforms.ToTensor(),
|
| 187 |
+
torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
|
| 188 |
+
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
|
| 189 |
+
])
|
| 190 |
+
else:
|
| 191 |
+
transforms = None
|
| 192 |
+
|
| 193 |
+
return self.Extras(
|
| 194 |
+
gdf=gdf,
|
| 195 |
+
sampling_configs=sampling_configs,
|
| 196 |
+
transforms=transforms,
|
| 197 |
+
effnet_preprocess=effnet_preprocess,
|
| 198 |
+
clip_preprocess=clip_preprocess
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
|
| 202 |
+
eval_image_embeds=False, return_fields=None):
|
| 203 |
+
conditions = super().get_conditions(
|
| 204 |
+
batch, models, extras, is_eval, is_unconditional,
|
| 205 |
+
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
|
| 206 |
+
)
|
| 207 |
+
return conditions
|
| 208 |
+
|
| 209 |
+
def setup_models(self, extras: Extras) -> Models: # configure model
|
| 210 |
+
|
| 211 |
+
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16
|
| 212 |
+
|
| 213 |
+
# EfficientNet encoderin
|
| 214 |
+
effnet = EfficientNetEncoder()
|
| 215 |
+
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
|
| 216 |
+
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
|
| 217 |
+
effnet.eval().requires_grad_(False).to(self.device)
|
| 218 |
+
del effnet_checkpoint
|
| 219 |
+
|
| 220 |
+
# Previewer
|
| 221 |
+
previewer = Previewer()
|
| 222 |
+
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
|
| 223 |
+
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
|
| 224 |
+
previewer.eval().requires_grad_(False).to(self.device)
|
| 225 |
+
del previewer_checkpoint
|
| 226 |
+
|
| 227 |
+
@contextmanager
|
| 228 |
+
def dummy_context():
|
| 229 |
+
yield None
|
| 230 |
+
|
| 231 |
+
loading_context = dummy_context if self.config.training else init_empty_weights
|
| 232 |
+
|
| 233 |
+
# Diffusion models
|
| 234 |
+
with loading_context():
|
| 235 |
+
generator_ema = None
|
| 236 |
+
if self.config.model_version == '3.6B':
|
| 237 |
+
generator = StageC()
|
| 238 |
+
if self.config.ema_start_iters is not None: # default setting
|
| 239 |
+
generator_ema = StageC()
|
| 240 |
+
elif self.config.model_version == '1B':
|
| 241 |
+
print('in line 155 1b light model', self.config.model_version )
|
| 242 |
+
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
| 243 |
+
|
| 244 |
+
if self.config.ema_start_iters is not None and self.config.training:
|
| 245 |
+
generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
| 246 |
+
else:
|
| 247 |
+
raise ValueError(f"Unknown model version {self.config.model_version}")
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
if loading_context is dummy_context:
|
| 252 |
+
generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path))
|
| 253 |
+
else:
|
| 254 |
+
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
|
| 255 |
+
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
|
| 256 |
+
|
| 257 |
+
generator._init_extra_parameter()
|
| 258 |
+
generator = generator.to(torch.bfloat16).to(self.device)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
train_norm = nn.ModuleList()
|
| 262 |
+
cnt_norm = 0
|
| 263 |
+
for mm in generator.modules():
|
| 264 |
+
if isinstance(mm, GlobalResponseNorm):
|
| 265 |
+
|
| 266 |
+
train_norm.append(Null_Model())
|
| 267 |
+
cnt_norm += 1
|
| 268 |
+
|
| 269 |
+
train_norm.append(generator.agg_net)
|
| 270 |
+
train_norm.append(generator.agg_net_up)
|
| 271 |
+
total = sum([ param.nelement() for param in train_norm.parameters()])
|
| 272 |
+
print('Trainable parameter', total / 1048576)
|
| 273 |
+
|
| 274 |
+
if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors')):
|
| 275 |
+
sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors'), map_location='cpu')
|
| 276 |
+
collect_sd = {}
|
| 277 |
+
for k, v in sdd.items():
|
| 278 |
+
collect_sd[k[7:]] = v
|
| 279 |
+
train_norm.load_state_dict(collect_sd, strict=True)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
train_norm.to(self.device).train().requires_grad_(True)
|
| 283 |
+
|
| 284 |
+
if generator_ema is not None:
|
| 285 |
+
|
| 286 |
+
generator_ema.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
|
| 287 |
+
generator_ema._init_extra_parameter()
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
pretrained_pth = os.path.join(self.config.output_path, self.config.experiment_id, 'generator.safetensors')
|
| 291 |
+
if os.path.exists(pretrained_pth):
|
| 292 |
+
print(pretrained_pth, 'exists')
|
| 293 |
+
generator_ema.load_state_dict(torch.load(pretrained_pth, map_location='cpu'))
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
generator_ema.eval().requires_grad_(False)
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
check_nan_inmodel(generator, 'generator')
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
if self.config.use_ddp and self.config.training:
|
| 306 |
+
|
| 307 |
+
train_norm = DDP(train_norm, device_ids=[self.device], find_unused_parameters=True)
|
| 308 |
+
|
| 309 |
+
# CLIP encoders
|
| 310 |
+
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
|
| 311 |
+
text_model = CLIPTextModelWithProjection.from_pretrained( self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
|
| 312 |
+
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device)
|
| 313 |
+
|
| 314 |
+
return self.Models(
|
| 315 |
+
effnet=effnet, previewer=previewer, train_norm = train_norm,
|
| 316 |
+
generator=generator, tokenizer=tokenizer, text_model=text_model, image_model=image_model,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
params = []
|
| 323 |
+
params += list(models.train_norm.module.parameters())
|
| 324 |
+
|
| 325 |
+
optimizer = optim.AdamW(params, lr=self.config.lr)
|
| 326 |
+
|
| 327 |
+
return self.Optimizers(generator=optimizer)
|
| 328 |
+
|
| 329 |
+
def ema_update(self, ema_model, source_model, beta):
|
| 330 |
+
for param_src, param_ema in zip(source_model.parameters(), ema_model.parameters()):
|
| 331 |
+
param_ema.data.mul_(beta).add_(param_src.data, alpha = 1 - beta)
|
| 332 |
+
|
| 333 |
+
def sync_ema(self, ema_model):
|
| 334 |
+
for param in ema_model.parameters():
|
| 335 |
+
torch.distributed.all_reduce(param.data, op=torch.distributed.ReduceOp.SUM)
|
| 336 |
+
param.data /= torch.distributed.get_world_size()
|
| 337 |
+
def setup_optimizers_backup(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
optimizer = optim.AdamW(
|
| 341 |
+
models.generator.up_blocks.parameters() ,
|
| 342 |
+
lr=self.config.lr)
|
| 343 |
+
optimizer = self.load_optimizer(optimizer, 'generator_optim',
|
| 344 |
+
fsdp_model=models.generator if self.config.use_fsdp else None)
|
| 345 |
+
return self.Optimizers(generator=optimizer)
|
| 346 |
+
|
| 347 |
+
def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers:
|
| 348 |
+
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates)
|
| 349 |
+
scheduler.last_epoch = self.info.total_steps
|
| 350 |
+
return self.Schedulers(generator=scheduler)
|
| 351 |
+
|
| 352 |
+
def setup_data(self, extras: Extras) -> WarpCore.Data:
|
| 353 |
+
# SETUP DATASET
|
| 354 |
+
dataset_path = self.config.webdataset_path
|
| 355 |
+
dataset = mydist_dataset(dataset_path, \
|
| 356 |
+
torchvision.transforms.ToTensor() if self.config.multi_aspect_ratio is not None \
|
| 357 |
+
else extras.transforms)
|
| 358 |
+
|
| 359 |
+
# SETUP DATALOADER
|
| 360 |
+
real_batch_size = self.config.batch_size // (self.world_size * self.config.grad_accum_steps)
|
| 361 |
+
|
| 362 |
+
sampler = DistributedSampler(dataset, rank=self.process_id, num_replicas = self.world_size, shuffle=True)
|
| 363 |
+
dataloader = DataLoader(
|
| 364 |
+
dataset, batch_size=real_batch_size, num_workers=8, pin_memory=True,
|
| 365 |
+
collate_fn=identity if self.config.multi_aspect_ratio is not None else None,
|
| 366 |
+
sampler = sampler
|
| 367 |
+
)
|
| 368 |
+
if self.is_main_node:
|
| 369 |
+
print(f"Training with batch size {self.config.batch_size} ({real_batch_size}/GPU)")
|
| 370 |
+
|
| 371 |
+
if self.config.multi_aspect_ratio is not None:
|
| 372 |
+
aspect_ratios = [float(Fraction(f)) for f in self.config.multi_aspect_ratio]
|
| 373 |
+
dataloader_iterator = Bucketeer(dataloader, density=[ss*ss for ss in self.config.image_size] , factor=32,
|
| 374 |
+
ratios=aspect_ratios, p_random_ratio=self.config.bucketeer_random_ratio,
|
| 375 |
+
interpolate_nearest=False) # , use_smartcrop=True)
|
| 376 |
+
else:
|
| 377 |
+
|
| 378 |
+
dataloader_iterator = iter(dataloader)
|
| 379 |
+
|
| 380 |
+
return self.Data(dataset=dataset, dataloader=dataloader, iterator=dataloader_iterator, sampler=sampler)
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def models_to_save(self):
|
| 384 |
+
pass
|
| 385 |
+
def setup_ddp(self, experiment_id, single_gpu=False, rank=0):
|
| 386 |
+
|
| 387 |
+
if not single_gpu:
|
| 388 |
+
local_rank = rank
|
| 389 |
+
process_id = rank
|
| 390 |
+
world_size = get_world_size()
|
| 391 |
+
|
| 392 |
+
self.process_id = process_id
|
| 393 |
+
self.is_main_node = process_id == 0
|
| 394 |
+
self.device = torch.device(local_rank)
|
| 395 |
+
self.world_size = world_size
|
| 396 |
+
|
| 397 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
| 398 |
+
os.environ['MASTER_PORT'] = '41443'
|
| 399 |
+
torch.cuda.set_device(local_rank)
|
| 400 |
+
init_process_group(
|
| 401 |
+
backend="nccl",
|
| 402 |
+
rank=local_rank,
|
| 403 |
+
world_size=world_size,
|
| 404 |
+
)
|
| 405 |
+
print(f"[GPU {process_id}] READY")
|
| 406 |
+
else:
|
| 407 |
+
self.is_main_node = rank == 0
|
| 408 |
+
self.process_id = rank
|
| 409 |
+
self.device = torch.device('cuda:0')
|
| 410 |
+
self.world_size = 1
|
| 411 |
+
print("Running in single thread, DDP not enabled.")
|
| 412 |
+
# Training loop --------------------------------
|
| 413 |
+
def get_target_lr_size(self, ratio, std_size=24):
|
| 414 |
+
w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio))
|
| 415 |
+
return (h * 32 , w * 32)
|
| 416 |
+
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
|
| 417 |
+
#batch = next(data.iterator)
|
| 418 |
+
batch = data
|
| 419 |
+
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
|
| 420 |
+
shape_lr = self.get_target_lr_size(ratio)
|
| 421 |
+
#print('in line 485', shape_lr, ratio, batch['images'].shape)
|
| 422 |
+
with torch.no_grad():
|
| 423 |
+
conditions = self.get_conditions(batch, models, extras)
|
| 424 |
+
|
| 425 |
+
latents = self.encode_latents(batch, models, extras)
|
| 426 |
+
latents_lr = self.encode_latents(batch, models, extras,target_size=shape_lr)
|
| 427 |
+
|
| 428 |
+
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1)
|
| 429 |
+
noised_lr, noise_lr, target_lr, logSNR_lr, noise_cond_lr, loss_weight_lr = extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1, t=torch.ones(latents.shape[0]).to(latents.device)*0.05, )
|
| 430 |
+
|
| 431 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 432 |
+
# 768 1536
|
| 433 |
+
require_cond = True
|
| 434 |
+
|
| 435 |
+
with torch.no_grad():
|
| 436 |
+
_, lr_enc_guide, lr_dec_guide = models.generator(noised_lr, noise_cond_lr, reuire_f=True, **conditions)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
pred = models.generator(noised, noise_cond, reuire_f=False, lr_guide=(lr_enc_guide, lr_dec_guide) if require_cond else None , **conditions)
|
| 440 |
+
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
|
| 441 |
+
|
| 442 |
+
loss_adjusted = (loss * loss_weight ).mean() / self.config.grad_accum_steps
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
|
| 446 |
+
extras.gdf.loss_weight.update_buckets(logSNR, loss)
|
| 447 |
+
|
| 448 |
+
return loss, loss_adjusted
|
| 449 |
+
|
| 450 |
+
def backward_pass(self, update, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers):
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
if update:
|
| 454 |
+
|
| 455 |
+
torch.distributed.barrier()
|
| 456 |
+
loss_adjusted.backward()
|
| 457 |
+
|
| 458 |
+
grad_norm = nn.utils.clip_grad_norm_(models.train_norm.module.parameters(), 1.0)
|
| 459 |
+
|
| 460 |
+
optimizers_dict = optimizers.to_dict()
|
| 461 |
+
for k in optimizers_dict:
|
| 462 |
+
if k != 'training':
|
| 463 |
+
optimizers_dict[k].step()
|
| 464 |
+
schedulers_dict = schedulers.to_dict()
|
| 465 |
+
for k in schedulers_dict:
|
| 466 |
+
if k != 'training':
|
| 467 |
+
schedulers_dict[k].step()
|
| 468 |
+
for k in optimizers_dict:
|
| 469 |
+
if k != 'training':
|
| 470 |
+
optimizers_dict[k].zero_grad(set_to_none=True)
|
| 471 |
+
self.info.total_steps += 1
|
| 472 |
+
else:
|
| 473 |
+
|
| 474 |
+
loss_adjusted.backward()
|
| 475 |
+
|
| 476 |
+
grad_norm = torch.tensor(0.0).to(self.device)
|
| 477 |
+
|
| 478 |
+
return grad_norm
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
def encode_latents(self, batch: dict, models: Models, extras: Extras, target_size=None) -> torch.Tensor:
|
| 482 |
+
|
| 483 |
+
images = batch['images'].to(self.device)
|
| 484 |
+
if target_size is not None:
|
| 485 |
+
images = F.interpolate(images, target_size)
|
| 486 |
+
|
| 487 |
+
return models.effnet(extras.effnet_preprocess(images))
|
| 488 |
+
|
| 489 |
+
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
|
| 490 |
+
return models.previewer(latents)
|
| 491 |
+
|
| 492 |
+
def __init__(self, rank=0, config_file_path=None, config_dict=None, device="cpu", training=True, world_size=1, ):
|
| 493 |
+
|
| 494 |
+
self.is_main_node = (rank == 0)
|
| 495 |
+
self.config: self.Config = self.setup_config(config_file_path, config_dict, training)
|
| 496 |
+
self.setup_ddp(self.config.experiment_id, single_gpu=world_size <= 1, rank=rank)
|
| 497 |
+
self.info: self.Info = self.setup_info()
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
def __call__(self, single_gpu=False):
|
| 502 |
+
|
| 503 |
+
if self.config.allow_tf32:
|
| 504 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 505 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 506 |
+
|
| 507 |
+
if self.is_main_node:
|
| 508 |
+
print()
|
| 509 |
+
print("**STARTIG JOB WITH CONFIG:**")
|
| 510 |
+
print(yaml.dump(self.config.to_dict(), default_flow_style=False))
|
| 511 |
+
print("------------------------------------")
|
| 512 |
+
print()
|
| 513 |
+
print("**INFO:**")
|
| 514 |
+
print(yaml.dump(vars(self.info), default_flow_style=False))
|
| 515 |
+
print("------------------------------------")
|
| 516 |
+
print()
|
| 517 |
+
|
| 518 |
+
# SETUP STUFF
|
| 519 |
+
extras = self.setup_extras_pre()
|
| 520 |
+
assert extras is not None, "setup_extras_pre() must return a DTO"
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
data = self.setup_data(extras)
|
| 525 |
+
assert data is not None, "setup_data() must return a DTO"
|
| 526 |
+
if self.is_main_node:
|
| 527 |
+
print("**DATA:**")
|
| 528 |
+
print(yaml.dump({k:type(v).__name__ for k, v in data.to_dict().items()}, default_flow_style=False))
|
| 529 |
+
print("------------------------------------")
|
| 530 |
+
print()
|
| 531 |
+
|
| 532 |
+
models = self.setup_models(extras)
|
| 533 |
+
assert models is not None, "setup_models() must return a DTO"
|
| 534 |
+
if self.is_main_node:
|
| 535 |
+
print("**MODELS:**")
|
| 536 |
+
print(yaml.dump({
|
| 537 |
+
k:f"{type(v).__name__} - {f'trainable params {sum(p.numel() for p in v.parameters() if p.requires_grad)}' if isinstance(v, nn.Module) else 'Not a nn.Module'}" for k, v in models.to_dict().items()
|
| 538 |
+
}, default_flow_style=False))
|
| 539 |
+
print("------------------------------------")
|
| 540 |
+
print()
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
optimizers = self.setup_optimizers(extras, models)
|
| 545 |
+
assert optimizers is not None, "setup_optimizers() must return a DTO"
|
| 546 |
+
if self.is_main_node:
|
| 547 |
+
print("**OPTIMIZERS:**")
|
| 548 |
+
print(yaml.dump({k:type(v).__name__ for k, v in optimizers.to_dict().items()}, default_flow_style=False))
|
| 549 |
+
print("------------------------------------")
|
| 550 |
+
print()
|
| 551 |
+
|
| 552 |
+
schedulers = self.setup_schedulers(extras, models, optimizers)
|
| 553 |
+
assert schedulers is not None, "setup_schedulers() must return a DTO"
|
| 554 |
+
if self.is_main_node:
|
| 555 |
+
print("**SCHEDULERS:**")
|
| 556 |
+
print(yaml.dump({k:type(v).__name__ for k, v in schedulers.to_dict().items()}, default_flow_style=False))
|
| 557 |
+
print("------------------------------------")
|
| 558 |
+
print()
|
| 559 |
+
|
| 560 |
+
post_extras =self.setup_extras_post(extras, models, optimizers, schedulers)
|
| 561 |
+
assert post_extras is not None, "setup_extras_post() must return a DTO"
|
| 562 |
+
extras = self.Extras.from_dict({ **extras.to_dict(),**post_extras.to_dict() })
|
| 563 |
+
if self.is_main_node:
|
| 564 |
+
print("**EXTRAS:**")
|
| 565 |
+
print(yaml.dump({k:f"{v}" for k, v in extras.to_dict().items()}, default_flow_style=False))
|
| 566 |
+
print("------------------------------------")
|
| 567 |
+
print()
|
| 568 |
+
# -------
|
| 569 |
+
|
| 570 |
+
# TRAIN
|
| 571 |
+
if self.is_main_node:
|
| 572 |
+
print("**TRAINING STARTING...**")
|
| 573 |
+
self.train(data, extras, models, optimizers, schedulers)
|
| 574 |
+
|
| 575 |
+
if single_gpu is False:
|
| 576 |
+
barrier()
|
| 577 |
+
destroy_process_group()
|
| 578 |
+
if self.is_main_node:
|
| 579 |
+
print()
|
| 580 |
+
print("------------------------------------")
|
| 581 |
+
print()
|
| 582 |
+
print("**TRAINING COMPLETE**")
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: TrainingCore.Optimizers,
|
| 587 |
+
schedulers: WarpCore.Schedulers):
|
| 588 |
+
start_iter = self.info.iter + 1
|
| 589 |
+
max_iters = self.config.updates * self.config.grad_accum_steps
|
| 590 |
+
if self.is_main_node:
|
| 591 |
+
print(f"STARTING AT STEP: {start_iter}/{max_iters}")
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
if self.is_main_node:
|
| 595 |
+
create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/')
|
| 596 |
+
|
| 597 |
+
models.generator.train()
|
| 598 |
+
|
| 599 |
+
iter_cnt = 0
|
| 600 |
+
epoch_cnt = 0
|
| 601 |
+
models.train_norm.train()
|
| 602 |
+
while True:
|
| 603 |
+
epoch_cnt += 1
|
| 604 |
+
if self.world_size > 1:
|
| 605 |
+
|
| 606 |
+
data.sampler.set_epoch(epoch_cnt)
|
| 607 |
+
for ggg in range(len(data.dataloader)):
|
| 608 |
+
iter_cnt += 1
|
| 609 |
+
loss, loss_adjusted = self.forward_pass(next(data.iterator), extras, models)
|
| 610 |
+
grad_norm = self.backward_pass(
|
| 611 |
+
iter_cnt % self.config.grad_accum_steps == 0 or iter_cnt == max_iters, loss_adjusted,
|
| 612 |
+
models, optimizers, schedulers
|
| 613 |
+
)
|
| 614 |
+
|
| 615 |
+
self.info.iter = iter_cnt
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
# UPDATE LOSS METRICS
|
| 619 |
+
self.info.ema_loss = loss.mean().item() if self.info.ema_loss is None else self.info.ema_loss * 0.99 + loss.mean().item() * 0.01
|
| 620 |
+
|
| 621 |
+
#print('in line 666 after ema loss', grad_norm, loss.mean().item(), iter_cnt, self.info.ema_loss)
|
| 622 |
+
if self.is_main_node and np.isnan(loss.mean().item()) or np.isnan(grad_norm.item()):
|
| 623 |
+
print(f" NaN value encountered in training run {self.info.wandb_run_id}", \
|
| 624 |
+
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
|
| 625 |
+
|
| 626 |
+
if self.is_main_node:
|
| 627 |
+
logs = {
|
| 628 |
+
'loss': self.info.ema_loss,
|
| 629 |
+
'backward_loss': loss_adjusted.mean().item(),
|
| 630 |
+
'ema_loss': self.info.ema_loss,
|
| 631 |
+
'raw_ori_loss': loss.mean().item(),
|
| 632 |
+
'grad_norm': grad_norm.item(),
|
| 633 |
+
'lr': optimizers.generator.param_groups[0]['lr'] if optimizers.generator is not None else 0,
|
| 634 |
+
'total_steps': self.info.total_steps,
|
| 635 |
+
}
|
| 636 |
+
if iter_cnt % (self.config.save_every) == 0:
|
| 637 |
+
|
| 638 |
+
print(iter_cnt, max_iters, logs, epoch_cnt, )
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
if iter_cnt == 1 or iter_cnt % (self.config.save_every ) == 0 or iter_cnt == max_iters:
|
| 643 |
+
|
| 644 |
+
# SAVE AND CHECKPOINT STUFF
|
| 645 |
+
if np.isnan(loss.mean().item()):
|
| 646 |
+
if self.is_main_node and self.config.wandb_project is not None:
|
| 647 |
+
print(f"NaN value encountered in training run {self.info.wandb_run_id}", \
|
| 648 |
+
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
|
| 649 |
+
|
| 650 |
+
else:
|
| 651 |
+
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
|
| 652 |
+
self.info.adaptive_loss = {
|
| 653 |
+
'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(),
|
| 654 |
+
'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(),
|
| 655 |
+
}
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
if self.is_main_node and iter_cnt % (self.config.save_every * self.config.grad_accum_steps) == 0:
|
| 660 |
+
print('save model', iter_cnt, iter_cnt % (self.config.save_every * self.config.grad_accum_steps), self.config.save_every, self.config.grad_accum_steps )
|
| 661 |
+
torch.save(models.train_norm.state_dict(), \
|
| 662 |
+
f'{self.config.output_path}/{self.config.experiment_id}/train_norm.safetensors')
|
| 663 |
+
|
| 664 |
+
torch.save(models.train_norm.state_dict(), \
|
| 665 |
+
f'{self.config.output_path}/{self.config.experiment_id}/train_norm_{iter_cnt}.safetensors')
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
if iter_cnt == 1 or iter_cnt % (self.config.save_every* self.config.grad_accum_steps) == 0 or iter_cnt == max_iters:
|
| 669 |
+
|
| 670 |
+
if self.is_main_node:
|
| 671 |
+
|
| 672 |
+
self.sample(models, data, extras)
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
if self.info.iter >= max_iters:
|
| 676 |
+
break
|
| 677 |
+
|
| 678 |
+
def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
models.generator.eval()
|
| 682 |
+
models.train_norm.eval()
|
| 683 |
+
with torch.no_grad():
|
| 684 |
+
batch = next(data.iterator)
|
| 685 |
+
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
|
| 686 |
+
|
| 687 |
+
shape_lr = self.get_target_lr_size(ratio)
|
| 688 |
+
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
|
| 689 |
+
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
| 690 |
+
|
| 691 |
+
latents = self.encode_latents(batch, models, extras)
|
| 692 |
+
latents_lr = self.encode_latents(batch, models, extras, target_size = shape_lr)
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
if self.is_main_node:
|
| 696 |
+
|
| 697 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 698 |
+
|
| 699 |
+
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
|
| 700 |
+
models.generator, conditions,
|
| 701 |
+
latents.shape, latents_lr.shape,
|
| 702 |
+
unconditions, device=self.device, **extras.sampling_configs
|
| 703 |
+
)
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
|
| 708 |
+
if self.is_main_node:
|
| 709 |
+
print('sampling results hr latent shape', latents.shape, 'lr latent shape', latents_lr.shape, )
|
| 710 |
+
noised_images = torch.cat(
|
| 711 |
+
[self.decode_latents(latents[i:i + 1].float(), batch, models, extras) for i in range(len(latents))], dim=0)
|
| 712 |
+
|
| 713 |
+
sampled_images = torch.cat(
|
| 714 |
+
[self.decode_latents(sampled[i:i + 1].float(), batch, models, extras) for i in range(len(sampled))], dim=0)
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
noised_images_lr = torch.cat(
|
| 718 |
+
[self.decode_latents(latents_lr[i:i + 1].float(), batch, models, extras) for i in range(len(latents_lr))], dim=0)
|
| 719 |
+
|
| 720 |
+
sampled_images_lr = torch.cat(
|
| 721 |
+
[self.decode_latents(sampled_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_lr))], dim=0)
|
| 722 |
+
|
| 723 |
+
images = batch['images']
|
| 724 |
+
if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2):
|
| 725 |
+
images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic')
|
| 726 |
+
images_lr = nn.functional.interpolate(images, size=noised_images_lr.shape[-2:], mode='bicubic')
|
| 727 |
+
|
| 728 |
+
collage_img = torch.cat([
|
| 729 |
+
torch.cat([i for i in images.cpu()], dim=-1),
|
| 730 |
+
torch.cat([i for i in noised_images.cpu()], dim=-1),
|
| 731 |
+
torch.cat([i for i in sampled_images.cpu()], dim=-1),
|
| 732 |
+
], dim=-2)
|
| 733 |
+
|
| 734 |
+
collage_img_lr = torch.cat([
|
| 735 |
+
torch.cat([i for i in images_lr.cpu()], dim=-1),
|
| 736 |
+
torch.cat([i for i in noised_images_lr.cpu()], dim=-1),
|
| 737 |
+
torch.cat([i for i in sampled_images_lr.cpu()], dim=-1),
|
| 738 |
+
], dim=-2)
|
| 739 |
+
|
| 740 |
+
torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg')
|
| 741 |
+
torchvision.utils.save_image(collage_img_lr, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}_lr.jpg')
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
models.generator.train()
|
| 745 |
+
models.train_norm.train()
|
| 746 |
+
print('finish sampling')
|
| 747 |
+
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
def sample_fortest(self, models: Models, extras: Extras, hr_shape, lr_shape, batch, eval_image_embeds=False):
|
| 751 |
+
|
| 752 |
+
|
| 753 |
+
models.generator.eval()
|
| 754 |
+
|
| 755 |
+
with torch.no_grad():
|
| 756 |
+
|
| 757 |
+
if self.is_main_node:
|
| 758 |
+
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=eval_image_embeds)
|
| 759 |
+
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
| 760 |
+
|
| 761 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 762 |
+
|
| 763 |
+
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
|
| 764 |
+
models.generator, conditions,
|
| 765 |
+
hr_shape, lr_shape,
|
| 766 |
+
unconditions, device=self.device, **extras.sampling_configs
|
| 767 |
+
)
|
| 768 |
+
|
| 769 |
+
if models.generator_ema is not None:
|
| 770 |
+
|
| 771 |
+
*_, (sampled_ema, _, _, sampled_ema_lr) = extras.gdf.sample(
|
| 772 |
+
models.generator_ema, conditions,
|
| 773 |
+
latents.shape, latents_lr.shape,
|
| 774 |
+
unconditions, device=self.device, **extras.sampling_configs
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
else:
|
| 778 |
+
sampled_ema = sampled
|
| 779 |
+
sampled_ema_lr = sampled_lr
|
| 780 |
+
|
| 781 |
+
return sampled, sampled_lr
|
| 782 |
+
def main_worker(rank, cfg):
|
| 783 |
+
print("Launching Script in main worker")
|
| 784 |
+
|
| 785 |
+
warpcore = WurstCore(
|
| 786 |
+
config_file_path=cfg, rank=rank, world_size = get_world_size()
|
| 787 |
+
)
|
| 788 |
+
# core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD
|
| 789 |
+
|
| 790 |
+
# RUN TRAINING
|
| 791 |
+
warpcore(get_world_size()==1)
|
| 792 |
+
|
| 793 |
+
if __name__ == '__main__':
|
| 794 |
+
print('launch multi process')
|
| 795 |
+
# os.environ["OMP_NUM_THREADS"] = "1"
|
| 796 |
+
# os.environ["MKL_NUM_THREADS"] = "1"
|
| 797 |
+
#dist.init_process_group(backend="nccl")
|
| 798 |
+
#torch.backends.cudnn.benchmark = True
|
| 799 |
+
#train/train_c_my.py
|
| 800 |
+
#mp.set_sharing_strategy('file_system')
|
| 801 |
+
|
| 802 |
+
if get_master_ip() == "127.0.0.1":
|
| 803 |
+
# manually launch distributed processes
|
| 804 |
+
mp.spawn(main_worker, nprocs=get_world_size(), args=(sys.argv[1] if len(sys.argv) > 1 else None, ))
|
| 805 |
+
else:
|
| 806 |
+
main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, )
|
|
|