File size: 6,487 Bytes
54fdeab 845c238 54fdeab c4887da c8e1af0 54fdeab 17c1bbe 54fdeab d779abf 62afa83 54fdeab 99b47fb d129a90 99b47fb 845c238 c4887da 99b47fb 2cd88e3 17c1bbe 54fdeab 17c1bbe 54fdeab 17c1bbe 54fdeab 17c1bbe 5ab1e76 54fdeab e72de6c 54fdeab 17c1bbe e72de6c 54fdeab 17c1bbe 845c238 54fdeab e72de6c 54fdeab 17c1bbe 54fdeab 17c1bbe 54fdeab 17c1bbe 54fdeab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
from pathlib import Path
import pandas as pd
import os
import json
import requests
from envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from utils import LLM_BENCHMARKS_ABOUT_TEXT, LLM_BENCHMARKS_SUBMIT_TEXT, custom_css, jsonl_to_dataframe, add_average_column_to_df, apply_clickable_model
def fill_form(model_name, model_id, contact_email, challenge, submission_id, paper_link, architecture, license):
value = {
# Model name
"entry.1591601824": model_name,
# username/space
"entry.1171388028": model_id,
# Submission ID on CMT
"entry.171528970": submission_id,
# Preprint or paper link
"entry.1284338508": paper_link,
# Model architecture
"entry.1291571256": architecture,
# License
# Option: any text
"entry.272554778": license,
# Challenge
# Option: any text
"entry.1908975677": challenge,
# Email
# Option: any text
"entry.964644151": contact_email
}
return value
def sendForm(url, data):
try:
requests.post(url, data=data)
print("Submitted successfully!")
except:
print("Error!")
def submit(model_name, model_id, contact_email, challenge, submission_id, paper_link, architecture, license):
if model_name == "" or model_id == "" or challenge == "" or architecture == "" or license == "":
gr.Error("Please fill all the fields")
return
if submission_id == "" and paper_link =="":
gr.Error("Provide either a link to a paper describing the method or a submission ID for the MLSB workshop.")
return
try:
user_name = ""
if "/" in model_id:
user_name = model_id.split("/")[0]
model_path = model_id.split("/")[1]
eval_entry = {
"model_name": model_name,
"model_id": model_id,
"challenge": challenge,
"submission_id": submission_id,
"architecture": architecture,
"license": license
}
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{user_name}_{model_path}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Sending form")
formData = fill_form(model_name, model_id, contact_email, challenge, submission_id, paper_link, architecture, license)
sendForm("https://docs.google.com/forms/d/e/1FAIpQLSf1zP7RAFC5RLlva03xm0eIAPLKXOmMvNUzirbm82kdCUFKNw/formResponse", formData)
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
gr.Info("Successfully submitted", duration=10)
# Remove the local file
os.remove(out_path)
except:
gr.Error("Error submitting the model")
abs_path = Path(__file__).parent
# Any pandas-compatible data
persian_df = jsonl_to_dataframe(str(abs_path / "leaderboard_persian.jsonl"))
base_df = jsonl_to_dataframe(str(abs_path / "leaderboard_base.jsonl"))
all_columns = ["Model", "Average β¬οΈ", "Precision", "#Params (B)", "Part Multiple Choice", "ARC Easy", "ARC Challenging", "MMLU Pro", "GSM8k Persian", "Multiple Choice Persian"]
columns_to_average = ["Part Multiple Choice", "ARC Easy", "ARC Challenging", "MMLU Pro", "GSM8k Persian", "Multiple Choice Persian"]
base_df = add_average_column_to_df(base_df, columns_to_average, index=3)
persian_df = add_average_column_to_df(persian_df, columns_to_average, index=3)
base_df = apply_clickable_model(df=base_df, column_name="Model")
persian_df = apply_clickable_model(df=persian_df, column_name="Model")
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("""
# Part LLM Leaderboard
""")
with gr.Tab("ποΈ Persian Leaderboard"):
gr.Markdown("""## Persian LLM Leaderboard
Evaluating Persian Fine-Tuned models
""")
Leaderboard(
value=persian_df,
select_columns=SelectColumns(
default_selection=all_columns,
cant_deselect=["Model"],
label="Select Columns to Show",
),
search_columns=["model_name_for_query"],
hide_columns=["model_name_for_query",],
filter_columns=["Precision", "#Params (B)"],
)
with gr.Tab("π₯ Base Leaderboard"):
gr.Markdown("""## Base LLM Leaderboard
Evaluating Base Models
""")
Leaderboard(
value=base_df,
select_columns=SelectColumns(
default_selection=all_columns,
cant_deselect=["Model"],
label="Select Columns to Show",
),
search_columns=["model_name_for_query"],
hide_columns=["model_name_for_query",],
filter_columns=["Precision", "#Params (B)"],
)
with gr.TabItem("π About"):
gr.Markdown(LLM_BENCHMARKS_ABOUT_TEXT)
with gr.Tab("βοΈ Submit"):
gr.Markdown(LLM_BENCHMARKS_SUBMIT_TEXT)
model_name = gr.Textbox(label="Model name")
model_id = gr.Textbox(label="username/space e.g mlsb/alphafold3")
contact_email = gr.Textbox(label="Contact E-Mail")
challenge = gr.Radio(choices=["Persian", "Base"],label="Challenge")
gr.Markdown("Either give a submission id if you submitted to the MLSB workshop or provide a link to the preprint/paper describing the method.")
with gr.Row():
submission_id = gr.Textbox(label="Submission ID on CMT")
paper_link = gr.Textbox(label="Preprint or Paper link")
architecture = gr.Dropdown(choices=["GNN", "CNN","Diffusion Model", "Physics-based", "Other"],label="Model architecture")
license = gr.Dropdown(choices=["mit", "apache-2.0", "gplv2", "gplv3", "lgpl", "mozilla", "bsd", "other"],label="License")
submit_btn = gr.Button("Submit")
submit_btn.click(submit, inputs=[model_name, model_id, contact_email, challenge, submission_id, paper_link, architecture, license], outputs=[])
gr.Markdown("""
Please find more information about the challenges on [mlsb.io/#challenge](https://mlsb.io/#challenge)""")
if __name__ == "__main__":
demo.launch() |