Dattatreya
commited on
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torchvision import transforms
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from torch import optim
|
| 7 |
+
import torchvision
|
| 8 |
+
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
|
| 11 |
+
def create_vgg_model():
|
| 12 |
+
model_weights = torchvision.models.VGG19_Weights.DEFAULT
|
| 13 |
+
model = torchvision.models.vgg19(weights=model_weights)
|
| 14 |
+
for param in model.parameters():
|
| 15 |
+
param.requires_grad = False
|
| 16 |
+
model = model.features
|
| 17 |
+
return model
|
| 18 |
+
|
| 19 |
+
def preprocess(img):
|
| 20 |
+
image = Image.fromarray(img).convert('RGB')
|
| 21 |
+
imsize = 196
|
| 22 |
+
transform = transforms.Compose([
|
| 23 |
+
transforms.Resize((imsize, imsize)),
|
| 24 |
+
transforms.ToTensor(),
|
| 25 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 26 |
+
])
|
| 27 |
+
image = transform(image)
|
| 28 |
+
image = image.unsqueeze(dim=0)
|
| 29 |
+
return image
|
| 30 |
+
|
| 31 |
+
def deprocess(image):
|
| 32 |
+
image = image.clone()
|
| 33 |
+
image = image.squeeze(0)
|
| 34 |
+
image = image.permute(1, 2, 0)
|
| 35 |
+
image = image.cpu().detach().numpy()
|
| 36 |
+
image = image * np.array([0.229, 0.224, 0.225]) + np.array([0.485, 0.456, 0.406])
|
| 37 |
+
image = image.clip(0, 1)
|
| 38 |
+
return image
|
| 39 |
+
|
| 40 |
+
def get_features(image, model):
|
| 41 |
+
features = {}
|
| 42 |
+
layers = {
|
| 43 |
+
'0': 'layer_1',
|
| 44 |
+
'5': 'layer_2',
|
| 45 |
+
'10': 'layer_3',
|
| 46 |
+
'19': 'layer_4',
|
| 47 |
+
'28': 'layer_5'
|
| 48 |
+
}
|
| 49 |
+
x = image
|
| 50 |
+
for name, layer in model._modules.items():
|
| 51 |
+
x = layer(x)
|
| 52 |
+
if name in layers:
|
| 53 |
+
features[layers[name]] = x
|
| 54 |
+
return features
|
| 55 |
+
|
| 56 |
+
def gram_matrix(image):
|
| 57 |
+
b, c, h, w = image.size()
|
| 58 |
+
image = image.view(c, h * w)
|
| 59 |
+
gram = torch.mm(image, image.t())
|
| 60 |
+
return gram
|
| 61 |
+
|
| 62 |
+
def content_loss(target, content):
|
| 63 |
+
return torch.mean((target - content) ** 2)
|
| 64 |
+
|
| 65 |
+
def style_loss(target_features, style_grams):
|
| 66 |
+
loss = 0
|
| 67 |
+
for layer in target_features:
|
| 68 |
+
target_gram = gram_matrix(target_features[layer])
|
| 69 |
+
style_gram = style_grams[layer]
|
| 70 |
+
layer_style_loss = torch.mean((target_gram - style_gram) ** 2)
|
| 71 |
+
loss += layer_style_loss
|
| 72 |
+
return loss
|
| 73 |
+
|
| 74 |
+
def total_loss(content_loss, style_loss, alpha, beta):
|
| 75 |
+
return alpha * content_loss + beta * style_loss
|
| 76 |
+
|
| 77 |
+
def predict(content_image, style_image):
|
| 78 |
+
model = create_vgg_model().to(device).eval()
|
| 79 |
+
content_img = preprocess(content_image).to(device)
|
| 80 |
+
style_img = preprocess(style_image).to(device)
|
| 81 |
+
target_img = content_img.clone().requires_grad_(True)
|
| 82 |
+
content_features = get_features(content_img, model)
|
| 83 |
+
style_features = get_features(style_img, model)
|
| 84 |
+
style_gram = {layer: gram_matrix(style_features[layer]) for layer in style_features}
|
| 85 |
+
optimizer = optim.Adam([target_img], lr=0.06)
|
| 86 |
+
alpha_param = 1
|
| 87 |
+
beta_param = 1e2
|
| 88 |
+
epochs = 60
|
| 89 |
+
for i in range(epochs):
|
| 90 |
+
target_features = get_features(target_img, model)
|
| 91 |
+
c_loss = content_loss(target_features['layer_4'], content_features['layer_4'])
|
| 92 |
+
s_loss = style_loss(target_features, style_gram)
|
| 93 |
+
t_loss = total_loss(c_loss, s_loss, alpha_param, beta_param)
|
| 94 |
+
optimizer.zero_grad()
|
| 95 |
+
t_loss.backward()
|
| 96 |
+
optimizer.step()
|
| 97 |
+
results = deprocess(target_img)
|
| 98 |
+
return Image.fromarray((results * 255).astype(np.uint8))
|
| 99 |
+
|
| 100 |
+
title = "Neural Style Transfer 🎨"
|
| 101 |
+
|
| 102 |
+
demo = gr.Interface(fn=predict,
|
| 103 |
+
inputs=['image', 'image'],
|
| 104 |
+
outputs=gr.Image(),
|
| 105 |
+
title=title)
|
| 106 |
+
|
| 107 |
+
demo.launch(debug=False, share=False)
|
| 108 |
+
|