File size: 7,610 Bytes
5f625b7
 
 
 
 
 
 
 
 
a8236f5
0ac620d
a8236f5
bb01ced
91bb6b8
5f625b7
 
 
 
0ac620d
 
a8236f5
5f625b7
0ac620d
 
5f625b7
0ac620d
 
 
 
 
 
699d13a
0ac620d
 
 
 
 
 
 
a8236f5
f2ed596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f625b7
 
 
 
 
 
 
 
 
 
 
 
 
f2ed596
5f625b7
f2ed596
 
5f625b7
f2ed596
 
5f625b7
f2ed596
5f625b7
 
f2ed596
5f625b7
f2ed596
 
 
5f625b7
f2ed596
 
5f625b7
f2ed596
 
 
 
5f625b7
 
 
 
f2ed596
5f625b7
 
 
 
 
f2ed596
 
 
 
5f625b7
 
f2ed596
5f625b7
 
 
f2ed596
5f625b7
 
 
 
 
 
 
 
 
 
f2ed596
 
 
 
 
 
 
 
 
 
5f625b7
 
f2ed596
5f625b7
 
 
 
699d13a
2baebe5
 
 
699d13a
f2ed596
6407a06
 
 
f2ed596
6407a06
0ac620d
 
 
 
 
 
 
 
 
6407a06
699d13a
2baebe5
699d13a
 
 
0ac620d
 
 
 
 
 
6407a06
2baebe5
5f625b7
 
 
 
 
 
 
 
 
a8236f5
 
0ac620d
a8236f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f625b7
a8236f5
0ac620d
a8236f5
0ac620d
91bb6b8
5f625b7
 
a8236f5
 
 
0ac620d
 
 
 
fa7e143
0ac620d
 
 
 
 
5f625b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from haystack.document_stores.faiss import FAISSDocumentStore
from haystack.nodes.retriever import EmbeddingRetriever
from haystack.nodes.ranker import BaseRanker
from haystack.pipelines import Pipeline

from haystack.document_stores.base import BaseDocumentStore
from haystack.schema import Document

from typing import Optional, List

# from huggingface_hub import get_inference_endpoint
from datasets import load_dataset
from time import perf_counter
import gradio as gr
import numpy as np
import requests
import os

TOP_K = 2
BATCH_SIZE = 16

HF_TOKEN = os.getenv("HF_TOKEN")
RANKER_URL = os.getenv("RANKER_URL")
RETRIEVER_URL = os.getenv("RETRIEVER_URL")

# RETRIEVER_IE = get_inference_endpoint(
#     "fastrag-retriever", namespace="optimum-intel", token=HF_TOKEN
# )
# RANKER_IE = get_inference_endpoint(
#     "fastrag-ranker", namespace="optimum-intel", token=HF_TOKEN
# )

# if RETRIEVER_IE.status != "running":
#     RETRIEVER_IE.resume()
#     RETRIEVER_IE.wait()

# if RANKER_IE.status != "running":
#     RANKER_IE.resume()
#     RANKER_IE.wait()


def post(url, payload):
    response = requests.post(
        url,
        json=payload,
        headers={"Authorization": f"Bearer {HF_TOKEN}"},
    )
    return response.json()


def method_timer(method):
    def timed(self, *args, **kw):
        start_time = perf_counter()
        result = method(self, *args, **kw)
        end_time = perf_counter()
        print(
            f"{self.__class__.__name__}.{method.__name__} took {end_time - start_time} seconds"
        )
        return result

    return timed


class Retriever(EmbeddingRetriever):
    def __init__(
        self,
        document_store: Optional[BaseDocumentStore] = None,
        top_k: int = 10,
        batch_size: int = 32,
        scale_score: bool = True,
    ):
        self.document_store = document_store
        self.top_k = top_k
        self.batch_size = batch_size
        self.scale_score = scale_score

    @method_timer
    def embed_queries(self, queries: List[str]) -> np.ndarray:
        payload = {"queries": queries, "inputs": ""}
        response = post(RETRIEVER_URL, payload)

        if "error" in response:
            raise gr.Error(response["error"])

        arrays = np.array(response)
        return arrays

    @method_timer
    def embed_documents(self, documents: List[Document]) -> np.ndarray:
        documents = [d.to_dict() for d in documents]
        for doc in documents:
            doc["embedding"] = None

        payload = {"documents": documents, "inputs": ""}
        response = post(RETRIEVER_URL, payload)

        if "error" in response:
            raise gr.Error(response["error"])

        arrays = np.array(response)
        return arrays


class Ranker(BaseRanker):
    @method_timer
    def predict(
        self, query: str, documents: List[Document], top_k: Optional[int] = None
    ) -> List[Document]:
        documents = [d.to_dict() for d in documents]
        for doc in documents:
            doc["embedding"] = None

        payload = {"query": query, "documents": documents, "top_k": top_k, "inputs": ""}
        response = post(RANKER_URL, payload)

        if "error" in response:
            raise gr.Error(response["error"])

        return [Document.from_dict(d) for d in response]

    @method_timer
    def predict_batch(
        self,
        queries: List[str],
        documents: List[List[Document]],
        batch_size: Optional[int] = None,
        top_k: Optional[int] = None,
    ) -> List[List[Document]]:
        documents = [[d.to_dict() for d in docs] for docs in documents]
        for docs in documents:
            for doc in docs:
                doc["embedding"] = None

        payload = {
            "queries": queries,
            "documents": documents,
            "batch_size": batch_size,
            "top_k": top_k,
            "inputs": "",
        }
        response = post(RANKER_URL, payload)

        if "error" in response:
            raise gr.Error(response["error"])

        return [[Document.from_dict(d) for d in docs] for docs in response]


if (
    os.path.exists("/data/faiss_document_store.db")
    and os.path.exists("/data/faiss_index.json")
    and os.path.exists("/data/faiss_index")
):
    document_store = FAISSDocumentStore.load("/data/faiss_index")
    retriever = Retriever(
        document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
    )
    document_store.save(index_path="/data/faiss_index")
else:
    for file in [
        "/data/faiss_document_store.db",
        "/data/faiss_index.json",
        "/data/faiss_index",
    ]:
        try:
            os.remove(file)
        except FileNotFoundError:
            pass

    document_store = FAISSDocumentStore(
        sql_url="sqlite:////data/faiss_document_store.db",
        return_embedding=True,
        embedding_dim=384,
    )
    document_store.write_documents(
        load_dataset("bilgeyucel/seven-wonders", split="train")
    )
    retriever = Retriever(
        document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
    )
    document_store.update_embeddings(retriever=retriever)
    document_store.save(index_path="/data/faiss_index")

ranker = Ranker()

pipe = Pipeline()
pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])
pipe.add_node(component=ranker, name="Ranker", inputs=["Retriever"])


def run(query: str) -> dict:
    pipe_output = pipe.run(query=query)

    output = f"""<h2>Top {TOP_K} Documents</h2>"""

    for i, doc in enumerate(pipe_output["documents"]):
        output += f"""
        <h3>Document {i + 1}</h3>
        <p><strong>ID:</strong> {doc.id}</p>
        <p><strong>Score:</strong> {doc.score}</p>
        <p><strong>Content:</strong> {doc.content}</p>
        """

    return output


examples = [
    "Where is Gardens of Babylon?",
    "Why did people build Great Pyramid of Giza?",
    "What does Rhodes Statue look like?",
    "Why did people visit the Temple of Artemis?",
    "What is the importance of Colossus of Rhodes?",
    "What happened to the Tomb of Mausolus?",
    "How did Colossus of Rhodes collapse?",
]

input_text = gr.components.Textbox(
    label="Query", placeholder="Enter a query", value=examples[0], lines=1
)
output_html = gr.components.HTML(label="Documents")

gr.Interface(
    fn=run,
    inputs=input_text,
    outputs=output_html,
    examples=examples,
    cache_examples=False,
    allow_flagging="never",
    title="End-to-End Retrieval & Ranking with Hugging Face Inference Endpoints and Spaces",
    description="""## A [haystack](https://haystack.deepset.ai/) pipeline with the following components
- <strong>Document Store</strong>: A [FAISS document store](https://github.com/facebookresearch/faiss/tree/main) containing the [`seven-wonders` dataset](https://huggingface.co/datasets/bilgeyucel/seven-wonders), created on this Space's [persistent storage](https://huggingface.co/docs/hub/en/spaces-storage).
- <strong>Retriever</strong>: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-retriever) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU.
- <strong>Ranker</strong>: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-ranker) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU.

This Space is based on the optimizations demonstrated in the blog [CPU Optimized Embeddings with πŸ€— Optimum Intel and fastRAG](https://huggingface.co/blog/intel-fast-embedding)
""",
).launch()