Spaces:
Running
Running
Commit
·
dcfabfb
1
Parent(s):
d912876
updated dataset
Browse files
app.py
CHANGED
|
@@ -12,14 +12,14 @@ LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
|
|
| 12 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
| 13 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN")
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
| 21 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"]
|
| 22 |
-
|
| 23 |
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]
|
| 24 |
|
| 25 |
|
|
@@ -31,20 +31,15 @@ def get_benchmark_df(benchmark):
|
|
| 31 |
llm_perf_dataset_repo.git_pull()
|
| 32 |
|
| 33 |
# load
|
| 34 |
-
df = pd.read_csv(
|
| 35 |
-
f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv")
|
| 36 |
-
|
| 37 |
# preprocess
|
| 38 |
df["model"] = df["model"].apply(make_clickable_model)
|
| 39 |
-
|
| 40 |
# filter
|
| 41 |
-
df = df[
|
| 42 |
-
|
| 43 |
# rename
|
| 44 |
df.rename(columns={
|
| 45 |
-
df_col: rename_col for df_col, rename_col in
|
| 46 |
}, inplace=True)
|
| 47 |
-
|
| 48 |
# sort
|
| 49 |
df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
|
| 50 |
|
|
@@ -72,7 +67,7 @@ with demo:
|
|
| 72 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 73 |
value=single_A100_df,
|
| 74 |
datatype=COLUMNS_DATATYPES,
|
| 75 |
-
headers=
|
| 76 |
elem_id="1xA100-table",
|
| 77 |
)
|
| 78 |
|
|
@@ -87,7 +82,7 @@ with demo:
|
|
| 87 |
leaderboard_table_full = gr.components.Dataframe(
|
| 88 |
value=multi_A100_df,
|
| 89 |
datatype=COLUMNS_DATATYPES,
|
| 90 |
-
headers=
|
| 91 |
elem_id="4xA100-table",
|
| 92 |
)
|
| 93 |
|
|
@@ -100,6 +95,7 @@ with demo:
|
|
| 100 |
elem_id="citation-button",
|
| 101 |
).style(show_copy_button=True)
|
| 102 |
|
|
|
|
| 103 |
# Restart space every hour
|
| 104 |
scheduler = BackgroundScheduler()
|
| 105 |
scheduler.add_job(restart_space, "interval", seconds=3600,
|
|
|
|
| 12 |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
|
| 13 |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN")
|
| 14 |
|
| 15 |
+
COLUMNS_MAPPING = {
|
| 16 |
+
"model": "Model 🤗",
|
| 17 |
+
"backend.name": "Backend 🏭",
|
| 18 |
+
"backend.torch_dtype": "Load Datatype 📥",
|
| 19 |
+
"generate.latency(s)": "Latency (s) ⬇️",
|
| 20 |
+
"generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
|
| 21 |
+
}
|
| 22 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"]
|
|
|
|
| 23 |
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]
|
| 24 |
|
| 25 |
|
|
|
|
| 31 |
llm_perf_dataset_repo.git_pull()
|
| 32 |
|
| 33 |
# load
|
| 34 |
+
df = pd.read_csv(f"llm-perf-dataset/reports/{benchmark}/inference_report.csv")
|
|
|
|
|
|
|
| 35 |
# preprocess
|
| 36 |
df["model"] = df["model"].apply(make_clickable_model)
|
|
|
|
| 37 |
# filter
|
| 38 |
+
df = df[COLUMNS_MAPPING.keys()]
|
|
|
|
| 39 |
# rename
|
| 40 |
df.rename(columns={
|
| 41 |
+
df_col: rename_col for df_col, rename_col in COLUMNS_MAPPING.items()
|
| 42 |
}, inplace=True)
|
|
|
|
| 43 |
# sort
|
| 44 |
df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
|
| 45 |
|
|
|
|
| 67 |
leaderboard_table_lite = gr.components.Dataframe(
|
| 68 |
value=single_A100_df,
|
| 69 |
datatype=COLUMNS_DATATYPES,
|
| 70 |
+
headers=COLUMNS_MAPPING.values(),
|
| 71 |
elem_id="1xA100-table",
|
| 72 |
)
|
| 73 |
|
|
|
|
| 82 |
leaderboard_table_full = gr.components.Dataframe(
|
| 83 |
value=multi_A100_df,
|
| 84 |
datatype=COLUMNS_DATATYPES,
|
| 85 |
+
headers=COLUMNS_MAPPING.values(),
|
| 86 |
elem_id="4xA100-table",
|
| 87 |
)
|
| 88 |
|
|
|
|
| 95 |
elem_id="citation-button",
|
| 96 |
).style(show_copy_button=True)
|
| 97 |
|
| 98 |
+
|
| 99 |
# Restart space every hour
|
| 100 |
scheduler = BackgroundScheduler()
|
| 101 |
scheduler.add_job(restart_space, "interval", seconds=3600,
|