Spaces:
Running
Running
add intel CPU to leaderboard (#32)
Browse files- add intel to leaderboard (0471f33e960a94686e670c0c70fb4c2cd8c5ae42)
- add intel to leaderboard (591a3e40a5c2aa1bcc27c2e9464dbf45366f6c70)
- intel results accesible in the leaderboard (003f467675456e4814fd68f1fd6fcb4b875b967d)
- add intel results to leaderboard (9f82a2bedf611b6097a56acf8504e93c5ae7a1e5)
- add intel results to leaderboard (d2401bdfdf5d857e255a1877f54b9fd846ad1b11)
- add intel results to leaderboard (39105fc16c53a5878e618dd07993eaba296d2696)
- fix hardware name (d7880b24c12052284d96ea76ef7a07039401d569)
- add documentation about the intel hardware (504caea55fac11d7f1170bf6d26f2b7b153e609b)
- add documentation about the intel hardware (4aa590a679e0c52ee0f3a4f187792a366d5b1299)
- .gitignore +2 -0
- app.py +20 -16
- hardware.yml +46 -0
- src/hardware.py +26 -0
- src/llm_perf.py +7 -5
- src/panel.py +39 -39
.gitignore
CHANGED
|
@@ -4,5 +4,7 @@ __pycache__/
|
|
| 4 |
*ipynb
|
| 5 |
.vscode/
|
| 6 |
|
|
|
|
|
|
|
| 7 |
dataset/
|
| 8 |
.venv
|
|
|
|
| 4 |
*ipynb
|
| 5 |
.vscode/
|
| 6 |
|
| 7 |
+
work-in-progress/
|
| 8 |
+
|
| 9 |
dataset/
|
| 10 |
.venv
|
app.py
CHANGED
|
@@ -4,6 +4,7 @@ from src.assets import custom_css
|
|
| 4 |
|
| 5 |
# from src.attention import create_attn_plots
|
| 6 |
from src.content import ABOUT, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
|
|
|
|
| 7 |
from src.leaderboard import create_leaderboard_table
|
| 8 |
from src.llm_perf import get_llm_perf_df
|
| 9 |
from src.map import create_lat_score_mem_plot
|
|
@@ -13,14 +14,7 @@ from src.panel import (
|
|
| 13 |
create_select_callback,
|
| 14 |
)
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
MACHINE_TO_HARDWARE = {
|
| 19 |
-
"1xA10": "A10-24GB-150W π₯οΈ",
|
| 20 |
-
"1xA100": "A100-80GB-275W π₯οΈ",
|
| 21 |
-
"1xT4": "T4-16GB-70W π₯οΈ",
|
| 22 |
-
# "1xH100": "H100-80GB-700W π₯οΈ",
|
| 23 |
-
}
|
| 24 |
|
| 25 |
|
| 26 |
demo = gr.Blocks(css=custom_css)
|
|
@@ -29,12 +23,19 @@ with demo:
|
|
| 29 |
gr.HTML(TITLE, elem_classes="title")
|
| 30 |
####################### HARDWARE TABS #######################
|
| 31 |
with gr.Tabs(elem_classes="tabs"):
|
| 32 |
-
for id,
|
| 33 |
-
with gr.TabItem(
|
| 34 |
-
#######################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
(
|
| 36 |
filter_button,
|
| 37 |
machine_textbox,
|
|
|
|
| 38 |
score_slider,
|
| 39 |
memory_slider,
|
| 40 |
backend_checkboxes,
|
|
@@ -42,17 +43,18 @@ with demo:
|
|
| 42 |
optimization_checkboxes,
|
| 43 |
quantization_checkboxes,
|
| 44 |
kernels_checkboxes,
|
| 45 |
-
) = create_control_panel(machine=machine)
|
| 46 |
####################### HARDWARE SUBTABS #######################
|
| 47 |
with gr.Tabs(elem_classes="subtabs"):
|
| 48 |
-
open_llm_perf_df = get_llm_perf_df(machine=machine)
|
| 49 |
####################### LEADERBOARD TAB #######################
|
| 50 |
with gr.TabItem("Leaderboard π
", id=0):
|
| 51 |
search_bar, columns_checkboxes, leaderboard_table = (
|
| 52 |
create_leaderboard_table(open_llm_perf_df)
|
| 53 |
)
|
| 54 |
-
|
| 55 |
-
|
|
|
|
| 56 |
###################### ATTENTIONS SPEEDUP TAB #######################
|
| 57 |
# with gr.TabItem("Attention π", id=2):
|
| 58 |
# attn_prefill_plot, attn_decode_plot = create_attn_plots(
|
|
@@ -69,6 +71,7 @@ with demo:
|
|
| 69 |
filter_button,
|
| 70 |
# inputs
|
| 71 |
machine_textbox,
|
|
|
|
| 72 |
score_slider,
|
| 73 |
memory_slider,
|
| 74 |
backend_checkboxes,
|
|
@@ -91,6 +94,7 @@ with demo:
|
|
| 91 |
create_select_callback(
|
| 92 |
# inputs
|
| 93 |
machine_textbox,
|
|
|
|
| 94 |
# interactive
|
| 95 |
columns_checkboxes,
|
| 96 |
search_bar,
|
|
@@ -99,7 +103,7 @@ with demo:
|
|
| 99 |
)
|
| 100 |
|
| 101 |
####################### ABOUT TAB #######################
|
| 102 |
-
with gr.TabItem("About π", id=
|
| 103 |
gr.Markdown(ABOUT, elem_classes="descriptive-text")
|
| 104 |
####################### CITATION
|
| 105 |
with gr.Row():
|
|
|
|
| 4 |
|
| 5 |
# from src.attention import create_attn_plots
|
| 6 |
from src.content import ABOUT, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
|
| 7 |
+
from src.hardware import load_hardware_configs
|
| 8 |
from src.leaderboard import create_leaderboard_table
|
| 9 |
from src.llm_perf import get_llm_perf_df
|
| 10 |
from src.map import create_lat_score_mem_plot
|
|
|
|
| 14 |
create_select_callback,
|
| 15 |
)
|
| 16 |
|
| 17 |
+
configs = load_hardware_configs("hardware.yml")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
demo = gr.Blocks(css=custom_css)
|
|
|
|
| 23 |
gr.HTML(TITLE, elem_classes="title")
|
| 24 |
####################### HARDWARE TABS #######################
|
| 25 |
with gr.Tabs(elem_classes="tabs"):
|
| 26 |
+
for id, config in enumerate(configs):
|
| 27 |
+
with gr.TabItem(config.description, id=id):
|
| 28 |
+
####################### HARDWARE DETAILS #######################
|
| 29 |
+
if config.detail:
|
| 30 |
+
gr.Markdown(config.detail, elem_classes="descriptive-text")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# ####################### CONTROL PANEL #######################
|
| 35 |
(
|
| 36 |
filter_button,
|
| 37 |
machine_textbox,
|
| 38 |
+
subsets_values,
|
| 39 |
score_slider,
|
| 40 |
memory_slider,
|
| 41 |
backend_checkboxes,
|
|
|
|
| 43 |
optimization_checkboxes,
|
| 44 |
quantization_checkboxes,
|
| 45 |
kernels_checkboxes,
|
| 46 |
+
) = create_control_panel(machine=config.machine, subsets=config.subsets, hardware_provider=config.hardware_provider)
|
| 47 |
####################### HARDWARE SUBTABS #######################
|
| 48 |
with gr.Tabs(elem_classes="subtabs"):
|
| 49 |
+
open_llm_perf_df = get_llm_perf_df(machine=config.machine, subsets=config.subsets)
|
| 50 |
####################### LEADERBOARD TAB #######################
|
| 51 |
with gr.TabItem("Leaderboard π
", id=0):
|
| 52 |
search_bar, columns_checkboxes, leaderboard_table = (
|
| 53 |
create_leaderboard_table(open_llm_perf_df)
|
| 54 |
)
|
| 55 |
+
if config.hardware_provider != "intel": # TODO intel CPU does not measure the memory requirements correctly, so disable the graph feature until we fix the underlying issue
|
| 56 |
+
with gr.TabItem("Find Your Best Model π§", id=1):
|
| 57 |
+
lat_score_mem_plot = create_lat_score_mem_plot(open_llm_perf_df)
|
| 58 |
###################### ATTENTIONS SPEEDUP TAB #######################
|
| 59 |
# with gr.TabItem("Attention π", id=2):
|
| 60 |
# attn_prefill_plot, attn_decode_plot = create_attn_plots(
|
|
|
|
| 71 |
filter_button,
|
| 72 |
# inputs
|
| 73 |
machine_textbox,
|
| 74 |
+
subsets_values,
|
| 75 |
score_slider,
|
| 76 |
memory_slider,
|
| 77 |
backend_checkboxes,
|
|
|
|
| 94 |
create_select_callback(
|
| 95 |
# inputs
|
| 96 |
machine_textbox,
|
| 97 |
+
subsets_values,
|
| 98 |
# interactive
|
| 99 |
columns_checkboxes,
|
| 100 |
search_bar,
|
|
|
|
| 103 |
)
|
| 104 |
|
| 105 |
####################### ABOUT TAB #######################
|
| 106 |
+
with gr.TabItem("About π", id=len(configs)):
|
| 107 |
gr.Markdown(ABOUT, elem_classes="descriptive-text")
|
| 108 |
####################### CITATION
|
| 109 |
with gr.Row():
|
hardware.yml
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- machine: 1xA10
|
| 2 |
+
description: A10-24GB-150W π₯οΈ
|
| 3 |
+
hardware_provider: nvidia
|
| 4 |
+
hardware_type: gpu
|
| 5 |
+
subsets:
|
| 6 |
+
- unquantized
|
| 7 |
+
- awq
|
| 8 |
+
- bnb
|
| 9 |
+
- gptq
|
| 10 |
+
backends:
|
| 11 |
+
- pytorch
|
| 12 |
+
|
| 13 |
+
- machine: 1xA100
|
| 14 |
+
description: A100-80GB-275W π₯οΈ
|
| 15 |
+
hardware_provider: nvidia
|
| 16 |
+
hardware_type: gpu
|
| 17 |
+
subsets:
|
| 18 |
+
- unquantized
|
| 19 |
+
- awq
|
| 20 |
+
- bnb
|
| 21 |
+
- gptq
|
| 22 |
+
backends:
|
| 23 |
+
- pytorch
|
| 24 |
+
|
| 25 |
+
- machine: 1xT4
|
| 26 |
+
description: T4-16GB-70W π₯οΈ
|
| 27 |
+
hardware_provider: nvidia
|
| 28 |
+
hardware_type: gpu
|
| 29 |
+
subsets:
|
| 30 |
+
- unquantized
|
| 31 |
+
- awq
|
| 32 |
+
- bnb
|
| 33 |
+
- gptq
|
| 34 |
+
backends:
|
| 35 |
+
- pytorch
|
| 36 |
+
|
| 37 |
+
- machine: 32vCPU-C7i
|
| 38 |
+
description: Intel-Xeon-SPR-385W π₯οΈ
|
| 39 |
+
detail: |
|
| 40 |
+
We tested the [32vCPU AWS C7i](https://aws.amazon.com/ec2/instance-types/c7i/) instance for the benchmark.
|
| 41 |
+
hardware_provider: intel
|
| 42 |
+
hardware_type: cpu
|
| 43 |
+
subsets:
|
| 44 |
+
- unquantized
|
| 45 |
+
backends:
|
| 46 |
+
- pytorch
|
src/hardware.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, List
|
| 2 |
+
|
| 3 |
+
import yaml
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class HardwareConfig:
|
| 7 |
+
def __init__(self, data: Dict[str, Any]):
|
| 8 |
+
self.machine = data["machine"]
|
| 9 |
+
self.description = data["description"]
|
| 10 |
+
self.hardware_provider = data["hardware_provider"]
|
| 11 |
+
self.hardware_type = data["hardware_type"]
|
| 12 |
+
self.subsets = data["subsets"]
|
| 13 |
+
self.backends = data["backends"]
|
| 14 |
+
self.detail = data.get("detail", None)
|
| 15 |
+
|
| 16 |
+
def __repr__(self):
|
| 17 |
+
return (
|
| 18 |
+
f"HardwareConfig(machine='{self.machine}', description='{self.description}', "
|
| 19 |
+
f"hardware_provider={self.hardware_provider}, hardware_type={self.hardware_type}, subsets={self.subsets}, backends={self.backends})"
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def load_hardware_configs(file_path: str) -> List[HardwareConfig]:
|
| 24 |
+
with open(file_path, "r") as file:
|
| 25 |
+
data = yaml.safe_load(file)
|
| 26 |
+
return [HardwareConfig(config) for config in data]
|
src/llm_perf.py
CHANGED
|
@@ -1,7 +1,10 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
|
| 3 |
import pandas as pd
|
| 4 |
|
|
|
|
|
|
|
| 5 |
from .utils import process_kernels, process_quantizations
|
| 6 |
|
| 7 |
DATASET_DIRECTORY = "dataset"
|
|
@@ -28,13 +31,12 @@ COLUMNS_MAPPING = {
|
|
| 28 |
"#Params (B)": "Params (B)",
|
| 29 |
}
|
| 30 |
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
|
| 31 |
-
SUBSETS = ["unquantized", "awq", "bnb", "gptq"]
|
| 32 |
SORTING_ASCENDING = [False, True, False]
|
| 33 |
|
| 34 |
|
| 35 |
-
def get_raw_llm_perf_df(machine: str
|
| 36 |
dfs = []
|
| 37 |
-
for subset in
|
| 38 |
try:
|
| 39 |
dfs.append(
|
| 40 |
pd.read_csv(
|
|
@@ -110,14 +112,14 @@ def processed_llm_perf_df(llm_perf_df):
|
|
| 110 |
return llm_perf_df
|
| 111 |
|
| 112 |
|
| 113 |
-
def get_llm_perf_df(machine: str
|
| 114 |
if not os.path.exists(DATASET_DIRECTORY):
|
| 115 |
os.makedirs(DATASET_DIRECTORY)
|
| 116 |
|
| 117 |
if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"):
|
| 118 |
llm_perf_df = pd.read_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv")
|
| 119 |
else:
|
| 120 |
-
llm_perf_df = get_raw_llm_perf_df(machine)
|
| 121 |
llm_perf_df = processed_llm_perf_df(llm_perf_df)
|
| 122 |
llm_perf_df.to_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False)
|
| 123 |
|
|
|
|
| 1 |
import os
|
| 2 |
+
from typing import List
|
| 3 |
|
| 4 |
import pandas as pd
|
| 5 |
|
| 6 |
+
from src.hardware import HardwareConfig
|
| 7 |
+
|
| 8 |
from .utils import process_kernels, process_quantizations
|
| 9 |
|
| 10 |
DATASET_DIRECTORY = "dataset"
|
|
|
|
| 31 |
"#Params (B)": "Params (B)",
|
| 32 |
}
|
| 33 |
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
|
|
|
|
| 34 |
SORTING_ASCENDING = [False, True, False]
|
| 35 |
|
| 36 |
|
| 37 |
+
def get_raw_llm_perf_df(machine: str, subsets: List[str]):
|
| 38 |
dfs = []
|
| 39 |
+
for subset in subsets:
|
| 40 |
try:
|
| 41 |
dfs.append(
|
| 42 |
pd.read_csv(
|
|
|
|
| 112 |
return llm_perf_df
|
| 113 |
|
| 114 |
|
| 115 |
+
def get_llm_perf_df(machine: str, subsets: List[str]):
|
| 116 |
if not os.path.exists(DATASET_DIRECTORY):
|
| 117 |
os.makedirs(DATASET_DIRECTORY)
|
| 118 |
|
| 119 |
if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"):
|
| 120 |
llm_perf_df = pd.read_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv")
|
| 121 |
else:
|
| 122 |
+
llm_perf_df = get_raw_llm_perf_df(machine, subsets)
|
| 123 |
llm_perf_df = processed_llm_perf_df(llm_perf_df)
|
| 124 |
llm_perf_df.to_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False)
|
| 125 |
|
src/panel.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
from src.leaderboard import get_leaderboard_df
|
|
@@ -8,9 +10,26 @@ from src.llm_perf import get_llm_perf_df
|
|
| 8 |
from src.map import get_lat_score_mem_fig
|
| 9 |
|
| 10 |
|
| 11 |
-
def create_control_panel(machine: str):
|
| 12 |
# controls
|
| 13 |
machine_textbox = gr.Textbox(value=machine, visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
with gr.Accordion("Control Panel ποΈ", open=False, elem_id="control-panel"):
|
| 15 |
with gr.Row():
|
| 16 |
with gr.Column(scale=2, variant="panel"):
|
|
@@ -32,8 +51,8 @@ def create_control_panel(machine: str):
|
|
| 32 |
with gr.Column(scale=1, variant="panel"):
|
| 33 |
backend_checkboxes = gr.CheckboxGroup(
|
| 34 |
label="Backends π",
|
| 35 |
-
choices=
|
| 36 |
-
value=
|
| 37 |
info="βοΈ Select the backends",
|
| 38 |
elem_id="backend-checkboxes",
|
| 39 |
)
|
|
@@ -49,8 +68,8 @@ def create_control_panel(machine: str):
|
|
| 49 |
with gr.Column(scale=1, variant="panel"):
|
| 50 |
optimization_checkboxes = gr.CheckboxGroup(
|
| 51 |
label="Attentions ποΈ",
|
| 52 |
-
choices=
|
| 53 |
-
value=
|
| 54 |
info="βοΈ Select the optimization",
|
| 55 |
elem_id="optimization-checkboxes",
|
| 56 |
)
|
|
@@ -58,20 +77,8 @@ def create_control_panel(machine: str):
|
|
| 58 |
with gr.Column(scale=1, variant="panel"):
|
| 59 |
quantization_checkboxes = gr.CheckboxGroup(
|
| 60 |
label="Quantizations ποΈ",
|
| 61 |
-
choices=
|
| 62 |
-
|
| 63 |
-
"BnB.4bit",
|
| 64 |
-
"BnB.8bit",
|
| 65 |
-
"AWQ.4bit",
|
| 66 |
-
"GPTQ.4bit",
|
| 67 |
-
],
|
| 68 |
-
value=[
|
| 69 |
-
"Unquantized",
|
| 70 |
-
"BnB.4bit",
|
| 71 |
-
"BnB.8bit",
|
| 72 |
-
"AWQ.4bit",
|
| 73 |
-
"GPTQ.4bit",
|
| 74 |
-
],
|
| 75 |
info="βοΈ Select the quantization schemes",
|
| 76 |
elem_id="quantization-checkboxes",
|
| 77 |
elem_classes="boxed-option",
|
|
@@ -79,20 +86,8 @@ def create_control_panel(machine: str):
|
|
| 79 |
with gr.Column(scale=1, variant="panel"):
|
| 80 |
kernels_checkboxes = gr.CheckboxGroup(
|
| 81 |
label="Kernels βοΈ",
|
| 82 |
-
choices=
|
| 83 |
-
|
| 84 |
-
"GPTQ.ExllamaV1",
|
| 85 |
-
"GPTQ.ExllamaV2",
|
| 86 |
-
"AWQ.GEMM",
|
| 87 |
-
"AWQ.GEMV",
|
| 88 |
-
],
|
| 89 |
-
value=[
|
| 90 |
-
"No Kernel",
|
| 91 |
-
"GPTQ.ExllamaV1",
|
| 92 |
-
"GPTQ.ExllamaV2",
|
| 93 |
-
"AWQ.GEMM",
|
| 94 |
-
"AWQ.GEMV",
|
| 95 |
-
],
|
| 96 |
info="βοΈ Select the custom kernels",
|
| 97 |
elem_id="kernel-checkboxes",
|
| 98 |
elem_classes="boxed-option",
|
|
@@ -107,6 +102,7 @@ def create_control_panel(machine: str):
|
|
| 107 |
return (
|
| 108 |
filter_button,
|
| 109 |
machine_textbox,
|
|
|
|
| 110 |
score_slider,
|
| 111 |
memory_slider,
|
| 112 |
backend_checkboxes,
|
|
@@ -119,6 +115,7 @@ def create_control_panel(machine: str):
|
|
| 119 |
|
| 120 |
def filter_rows_fn(
|
| 121 |
machine,
|
|
|
|
| 122 |
# inputs
|
| 123 |
score,
|
| 124 |
memory,
|
|
@@ -131,7 +128,7 @@ def filter_rows_fn(
|
|
| 131 |
columns,
|
| 132 |
search,
|
| 133 |
):
|
| 134 |
-
llm_perf_df = get_llm_perf_df(machine=machine)
|
| 135 |
# print(attentions)
|
| 136 |
# print(llm_perf_df["Attention ποΈ"].unique())
|
| 137 |
filtered_llm_perf_df = llm_perf_df[
|
|
@@ -145,7 +142,7 @@ def filter_rows_fn(
|
|
| 145 |
& (llm_perf_df["Memory (MB)"] <= memory)
|
| 146 |
]
|
| 147 |
selected_filtered_llm_perf_df = select_columns_fn(
|
| 148 |
-
machine, columns, search, filtered_llm_perf_df
|
| 149 |
)
|
| 150 |
selected_filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_llm_perf_df)
|
| 151 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
|
@@ -172,6 +169,7 @@ def create_control_callback(
|
|
| 172 |
filter_button,
|
| 173 |
# fixed
|
| 174 |
machine_textbox,
|
|
|
|
| 175 |
# inputs
|
| 176 |
score_slider,
|
| 177 |
memory_slider,
|
|
@@ -198,6 +196,7 @@ def create_control_callback(
|
|
| 198 |
inputs=[
|
| 199 |
# fixed
|
| 200 |
machine_textbox,
|
|
|
|
| 201 |
# inputs
|
| 202 |
score_slider,
|
| 203 |
memory_slider,
|
|
@@ -223,9 +222,9 @@ def create_control_callback(
|
|
| 223 |
)
|
| 224 |
|
| 225 |
|
| 226 |
-
def select_columns_fn(machine, columns, search, llm_perf_df=None):
|
| 227 |
if llm_perf_df is None:
|
| 228 |
-
llm_perf_df = get_llm_perf_df(machine=machine)
|
| 229 |
|
| 230 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
| 231 |
selected_leaderboard_df = selected_leaderboard_df[
|
|
@@ -239,6 +238,7 @@ def select_columns_fn(machine, columns, search, llm_perf_df=None):
|
|
| 239 |
def create_select_callback(
|
| 240 |
# fixed
|
| 241 |
machine_textbox,
|
|
|
|
| 242 |
# interactive
|
| 243 |
columns_checkboxes,
|
| 244 |
search_bar,
|
|
@@ -247,11 +247,11 @@ def create_select_callback(
|
|
| 247 |
):
|
| 248 |
columns_checkboxes.change(
|
| 249 |
fn=select_columns_fn,
|
| 250 |
-
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
| 251 |
outputs=[leaderboard_table],
|
| 252 |
)
|
| 253 |
search_bar.change(
|
| 254 |
fn=select_columns_fn,
|
| 255 |
-
inputs=[machine_textbox, columns_checkboxes, search_bar],
|
| 256 |
outputs=[leaderboard_table],
|
| 257 |
)
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
from src.leaderboard import get_leaderboard_df
|
|
|
|
| 10 |
from src.map import get_lat_score_mem_fig
|
| 11 |
|
| 12 |
|
| 13 |
+
def create_control_panel(machine: str, subsets: List[str], hardware_provider: str):
|
| 14 |
# controls
|
| 15 |
machine_textbox = gr.Textbox(value=machine, visible=False)
|
| 16 |
+
subsets_values = gr.State(value=subsets)
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
if hardware_provider == "nvidia":
|
| 20 |
+
backends = ["pytorch"]
|
| 21 |
+
attention_implementations = ["Eager", "SDPA", "FAv2"]
|
| 22 |
+
quantizations = ["Unquantized", "BnB.4bit", "BnB.8bit", "AWQ.4bit", "GPTQ.4bit"]
|
| 23 |
+
kernels = ["No Kernel", "GPTQ.ExllamaV1", "GPTQ.ExllamaV2", "AWQ.GEMM", "AWQ.GEMV"]
|
| 24 |
+
elif hardware_provider == "intel":
|
| 25 |
+
backends = ["pytorch", "onnxruntime", "openvino"]
|
| 26 |
+
attention_implementations = ["Eager"]
|
| 27 |
+
quantizations = ["Unquantized"]
|
| 28 |
+
kernels = ["No Kernel"]
|
| 29 |
+
else:
|
| 30 |
+
raise ValueError(f"Unknown hardware provider: {hardware_provider}")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
with gr.Accordion("Control Panel ποΈ", open=False, elem_id="control-panel"):
|
| 34 |
with gr.Row():
|
| 35 |
with gr.Column(scale=2, variant="panel"):
|
|
|
|
| 51 |
with gr.Column(scale=1, variant="panel"):
|
| 52 |
backend_checkboxes = gr.CheckboxGroup(
|
| 53 |
label="Backends π",
|
| 54 |
+
choices=backends,
|
| 55 |
+
value=backends,
|
| 56 |
info="βοΈ Select the backends",
|
| 57 |
elem_id="backend-checkboxes",
|
| 58 |
)
|
|
|
|
| 68 |
with gr.Column(scale=1, variant="panel"):
|
| 69 |
optimization_checkboxes = gr.CheckboxGroup(
|
| 70 |
label="Attentions ποΈ",
|
| 71 |
+
choices=attention_implementations,
|
| 72 |
+
value=attention_implementations,
|
| 73 |
info="βοΈ Select the optimization",
|
| 74 |
elem_id="optimization-checkboxes",
|
| 75 |
)
|
|
|
|
| 77 |
with gr.Column(scale=1, variant="panel"):
|
| 78 |
quantization_checkboxes = gr.CheckboxGroup(
|
| 79 |
label="Quantizations ποΈ",
|
| 80 |
+
choices=quantizations,
|
| 81 |
+
value=quantizations,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
info="βοΈ Select the quantization schemes",
|
| 83 |
elem_id="quantization-checkboxes",
|
| 84 |
elem_classes="boxed-option",
|
|
|
|
| 86 |
with gr.Column(scale=1, variant="panel"):
|
| 87 |
kernels_checkboxes = gr.CheckboxGroup(
|
| 88 |
label="Kernels βοΈ",
|
| 89 |
+
choices=kernels,
|
| 90 |
+
value=kernels,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
info="βοΈ Select the custom kernels",
|
| 92 |
elem_id="kernel-checkboxes",
|
| 93 |
elem_classes="boxed-option",
|
|
|
|
| 102 |
return (
|
| 103 |
filter_button,
|
| 104 |
machine_textbox,
|
| 105 |
+
subsets_values,
|
| 106 |
score_slider,
|
| 107 |
memory_slider,
|
| 108 |
backend_checkboxes,
|
|
|
|
| 115 |
|
| 116 |
def filter_rows_fn(
|
| 117 |
machine,
|
| 118 |
+
subsets,
|
| 119 |
# inputs
|
| 120 |
score,
|
| 121 |
memory,
|
|
|
|
| 128 |
columns,
|
| 129 |
search,
|
| 130 |
):
|
| 131 |
+
llm_perf_df = get_llm_perf_df(machine=machine, subsets=subsets)
|
| 132 |
# print(attentions)
|
| 133 |
# print(llm_perf_df["Attention ποΈ"].unique())
|
| 134 |
filtered_llm_perf_df = llm_perf_df[
|
|
|
|
| 142 |
& (llm_perf_df["Memory (MB)"] <= memory)
|
| 143 |
]
|
| 144 |
selected_filtered_llm_perf_df = select_columns_fn(
|
| 145 |
+
machine, subsets, columns, search, filtered_llm_perf_df
|
| 146 |
)
|
| 147 |
selected_filtered_lat_score_mem_fig = get_lat_score_mem_fig(filtered_llm_perf_df)
|
| 148 |
# filtered_bt_prefill_fig = get_bt_prefill_fig(filtered_df)
|
|
|
|
| 169 |
filter_button,
|
| 170 |
# fixed
|
| 171 |
machine_textbox,
|
| 172 |
+
subsets_textbox,
|
| 173 |
# inputs
|
| 174 |
score_slider,
|
| 175 |
memory_slider,
|
|
|
|
| 196 |
inputs=[
|
| 197 |
# fixed
|
| 198 |
machine_textbox,
|
| 199 |
+
subsets_textbox,
|
| 200 |
# inputs
|
| 201 |
score_slider,
|
| 202 |
memory_slider,
|
|
|
|
| 222 |
)
|
| 223 |
|
| 224 |
|
| 225 |
+
def select_columns_fn(machine, subsets, columns, search, llm_perf_df=None):
|
| 226 |
if llm_perf_df is None:
|
| 227 |
+
llm_perf_df = get_llm_perf_df(machine=machine, subsets=subsets)
|
| 228 |
|
| 229 |
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
| 230 |
selected_leaderboard_df = selected_leaderboard_df[
|
|
|
|
| 238 |
def create_select_callback(
|
| 239 |
# fixed
|
| 240 |
machine_textbox,
|
| 241 |
+
subsets_values,
|
| 242 |
# interactive
|
| 243 |
columns_checkboxes,
|
| 244 |
search_bar,
|
|
|
|
| 247 |
):
|
| 248 |
columns_checkboxes.change(
|
| 249 |
fn=select_columns_fn,
|
| 250 |
+
inputs=[machine_textbox, subsets_values, columns_checkboxes, search_bar],
|
| 251 |
outputs=[leaderboard_table],
|
| 252 |
)
|
| 253 |
search_bar.change(
|
| 254 |
fn=select_columns_fn,
|
| 255 |
+
inputs=[machine_textbox, subsets_values, columns_checkboxes, search_bar],
|
| 256 |
outputs=[leaderboard_table],
|
| 257 |
)
|