File size: 4,280 Bytes
11e4904
 
 
 
 
58e6c10
11e4904
58e6c10
11e4904
 
 
 
 
 
 
 
 
58e6c10
11e4904
58e6c10
11e4904
 
 
 
58e6c10
 
11e4904
 
 
58e6c10
11e4904
 
 
58e6c10
11e4904
 
 
58e6c10
11e4904
58e6c10
11e4904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e6c10
11e4904
 
 
 
 
 
 
 
 
 
 
58e6c10
11e4904
 
 
 
 
 
 
58e6c10
11e4904
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58e6c10
 
 
11e4904
 
 
 
 
 
 
 
58e6c10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import csv
import os
from datetime import datetime
from typing import Optional

import gradio as gr
from huggingface_hub import HfApi, Repository

from optimum_neuron_export import convert
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler

DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/neuron-exports"
DATA_FILENAME = "exports.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)

HF_TOKEN = os.environ.get("HF_WRITE_TOKEN")

DATADIR = "neuron_exports_data"

repo: Optional[Repository] = None
# Uncomment if you want to push to dataset repo with token
# if HF_TOKEN:
#     repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN)


def neuron_export(model_id: str, task: str) -> str:
    if not model_id:
        return f"### Invalid input 🐞 Please specify a model name, got {model_id}"

    try:
        api = HfApi(token=HF_TOKEN)  # Use HF_TOKEN if available, else anonymous
        token = HF_TOKEN  # Pass token to convert only if available

        error, commit_info = convert(api=api, model_id=model_id, task=task, token=token)
        if error != "0":
            return error

        print("[commit_info]", commit_info)

        # Save in a private dataset if repo initialized
        if repo is not None:
            repo.git_pull(rebase=True)
            with open(os.path.join(DATADIR, DATA_FILE), "a") as csvfile:
                writer = csv.DictWriter(
                    csvfile, fieldnames=["model_id", "pr_url", "time"]
                )
                writer.writerow(
                    {
                        "model_id": model_id,
                        "pr_url": commit_info.pr_url,
                        "time": str(datetime.now()),
                    }
                )
            commit_url = repo.push_to_hub()
            print("[dataset]", commit_url)

        pr_revision = commit_info.pr_revision.replace("/", "%2F")
        return f"#### Success πŸ”₯ This model was successfully exported and a PR was opened: [{commit_info.pr_url}]({commit_info.pr_url}). To use the model before the PR is approved, go to https://huggingface.co/{model_id}/tree/{pr_revision}"

    except Exception as e:
        return f"#### Error: {e}"


TITLE_IMAGE = """
<div style="display: block; margin-left: auto; margin-right: auto; width: 50%;">
<img src="https://huggingface.co/spaces/optimum/neuron-export/resolve/main/huggingfaceXneuron.png"/>
</div>
"""

TITLE = """
<div style="display: inline-flex; align-items: center; text-align: center; max-width: 1400px; gap: 0.8rem; font-size: 2.2rem;">
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px;">
    πŸ€— Optimum Neuron Model Exporter
</h1>
</div>
"""

DESCRIPTION = """
Export πŸ€— Transformers models hosted on the Hugging Face Hub to AWS Neuron-optimized format for Inferentia/Trainium acceleration.

*Features:*
- Automatically opens PR with Neuron-optimized model
- Preserves original model weights
- Adds proper tags to model card

*Note:*
- PR creation requires the Space owner to have a valid write token set via HF_WRITE_TOKEN
"""

with gr.Blocks() as demo:
    gr.HTML(TITLE_IMAGE)
    gr.HTML(TITLE)

    with gr.Row():
        with gr.Column(scale=50):
            gr.Markdown(DESCRIPTION)

        with gr.Column(scale=50):
            input_model = HuggingfaceHubSearch(
                label="Hub model ID",
                placeholder="Search for model ID on the hub",
                search_type="model",
            )
            input_task = gr.Textbox(
                value="auto",
                max_lines=1,
                label='Task (can be left to "auto", will be automatically inferred)',
            )
            btn = gr.Button("Export to Neuron")
            output = gr.Markdown(label="Output")

    btn.click(
        fn=neuron_export,
        inputs=[input_model, input_task],
        outputs=output,
    )


if __name__ == "__main__":
    def restart_space():
        if HF_TOKEN:
            HfApi().restart_space(repo_id="optimum/neuron-export", token=HF_TOKEN, factory_reboot=True)

    scheduler = BackgroundScheduler()
    scheduler.add_job(restart_space, "interval", seconds=21600)
    scheduler.start()

    demo.launch()