File size: 3,030 Bytes
be45560
 
 
78683dc
722b585
78683dc
 
 
 
 
 
 
142b5ba
d8b8502
7828173
33402b3
e1086aa
062f80b
2a39f0c
062f80b
 
 
 
 
 
 
 
2a39f0c
 
062f80b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a39f0c
062f80b
 
c1d27b0
9323159
90c6fb1
 
52d7eb6
90c6fb1
 
 
52d7eb6
 
 
 
533550b
 
33402b3
52d7eb6
 
90c6fb1
6470a23
 
722b585
36dac61
 
 
8f8fb45
6470a23
7cb9551
6470a23
133de3a
90c6fb1
39ec4fe
133de3a
6470a23
7828173
36dac61
0e701d6
7828173
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import smolagents, numpy, math, xlrd, os
import pandas as pd
from typing import Union
from smolagents import (
    tool,
    CodeAgent,
    HfApiModel,
    InferenceClientModel,
    WebSearchTool,
    PythonInterpreterTool,
    FinalAnswerTool,
    DuckDuckGoSearchTool,
    GoogleSearchTool
    )

#*
@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """
    Analyze an Excel file using pandas and answer a question about it.
    
    Args:
        file_path: Path to the Excel file
        query: Question about the data
        
    Returns:
        Analysis result or error message
    """
    try:
        import pandas as pd
        
        # Read the Excel file
        df = pd.read_excel(file_path)
        
        # Run various analyses based on the query
        result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"

#
class newAgent:
    """Adapts smolagents.CodeAgent to the HF course template API."""
    def __init__(self):
        model_id = "meta-llama/Meta-Llama-3-70B-Instruct"  # correct repo name
        hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")   # read real secret
        if not hf_token:
            raise RuntimeError("HUGGINGFACEHUB_API_TOKEN not set in Space secrets")
#*
        system_prompt=(
                "You are an agent that answers exam questions."
                "Your answers should contain only what is asked for in the question, without any other content."
                "Be exact and concise in your answers to get a good score on the exam questions. Do not add explanation to the answers."
                "If you are ask for a list of items, reply with ONLY those items separated by commas, no other text."
                "You have a tool to read Excel files. The Excel file tool is named read_excel"
        )
#*
        model = HfApiModel(model_id=model_id, token=hf_token)
        
        # include FinalAnswerTool in tools so agent knows when to stop
        tools = [FinalAnswerTool(), read_excel]
        self.agent = CodeAgent(
            tools=tools,
            model=model,
            add_base_tools=True,
            max_steps=5 # limit reasoning time
        )
   
    def __call__(self, question: str) -> str:
        """ONE question in β†’ ONE pure-text answer out."""
        #↓ Replace .run with whatever method actually returns the answer string.
        result = self.agent.run(question)
        return result

        #answer = self.run
          
#agent.run(
#    "At what temperature and for how long should I bake French baguettes made with type 65 flour?",
#)