File size: 1,852 Bytes
78683dc
 
 
 
 
 
 
 
 
 
af9ad40
78683dc
 
7828173
 
90c6fb1
 
 
7828173
90c6fb1
 
 
 
9453361
7828173
9323159
90c6fb1
 
 
 
 
 
7828173
90c6fb1
 
 
36dac61
 
 
 
 
 
 
7cb9551
 
133de3a
90c6fb1
39ec4fe
133de3a
7557d12
7828173
36dac61
0e701d6
7828173
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import smolagents, numpy, math, xlrd, os
from smolagents import (
    CodeAgent,
    HfApiModel,
    InferenceClientModel,
    WebSearchTool,
    PythonInterpreterTool,
    FinalAnswerTool,
    DuckDuckGoSearchTool,
    GoogleSearchTool,
    VisitWebPageTool

)

#model_id = "Qwen/Qwen2.5-Coder-32B-Instruct" 
#model_id = 'meta-llama/Llama-3.3-70B-Instruct'

#model = HfApiModel(model_id=model_id, token="HUGGINGFACEHUB_API_TOKEN") 

#agent = CodeAgent(tools=[], model=model, add_base_tools=True)

#max_steps=5
#import os
#from smolagents import CodeAgent, HfApiModel, InferenceClientModel, WebSearchTool

class newAgent:
    """Adapts smolagents.CodeAgent to the HF course template API."""
    def __init__(self):
        model_id = "meta-llama/Meta-Llama-3-70B-Instruct"  # correct repo name
        hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")   # read real secret
        if not hf_token:
            raise RuntimeError("HUGGINGFACEHUB_API_TOKEN not set in Space secrets")

        model = HfApiModel(model_id=model_id, token=hf_token)
        # add_base_tools=True already gives you search, python, etc.
        self.agent = CodeAgent(tools=[], model=model, add_base_tools=True)
    #*
            # include FinalAnswerTool in tools so agent knows when to stop
        tools = [FinalAnswerTool()]
        self.agent = CodeAgent(
            tools=tools,
            model=model,
            add_base_tools=True
        )
            #*
    def __call__(self, question: str) -> str:
        """ONE question in β†’ ONE pure-text answer out."""
        #↓ Replace .run with whatever method actually returns the answer string.
        result = self.agent.run(question)
        return answer

        #answer = self.run
          
#agent.run(
#    "At what temperature and for how long should I bake French baguettes made with type 65 flour?",
#)