Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,51 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
):
|
37 |
-
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
import spaces
|
5 |
+
|
6 |
+
|
7 |
+
model_name = "Zhihu-ai/Zhi-writing-dsr1-14"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_name,
|
11 |
+
torch_dtype=torch.float16,
|
12 |
+
device_map="auto",
|
13 |
+
trust_remote_code=True
|
14 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
@spaces.GPU()
|
17 |
+
def predict(message, history):
|
18 |
+
|
19 |
+
history_text = ""
|
20 |
+
for human, assistant in history:
|
21 |
+
history_text += f"Human: {human}\nAssistant: {assistant}\n"
|
22 |
+
prompt = f"{history_text}Human: {message}\nAssistant:"
|
23 |
+
|
24 |
+
# 生成回复
|
25 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
26 |
+
|
27 |
+
# 使用流式生成
|
28 |
+
for response in model.generate(
|
29 |
+
**inputs,
|
30 |
+
max_new_tokens=10000,
|
31 |
+
do_sample=True,
|
32 |
+
temperature=0.7,
|
33 |
+
top_p=0.9,
|
34 |
+
repetition_penalty=1.1,
|
35 |
+
pad_token_id=tokenizer.eos_token_id,
|
36 |
+
streamer=gr.TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
37 |
):
|
38 |
+
yield response.strip()
|
|
|
|
|
|
|
39 |
|
40 |
+
# 创建Gradio界面
|
|
|
|
|
|
|
41 |
demo = gr.ChatInterface(
|
42 |
+
predict,
|
43 |
+
title="Zhi-writing-dsr1-14",
|
44 |
+
description="这是一个基于Zhi-writing-dsr1-14的文章生成器。",
|
45 |
+
examples=["以鲁迅口吻写一篇500字关于桔了个仔的散文", "用知乎常见的表达方式讲讲什么是AI?", "告诉我一个我大概率不知道的人生哲理"],
|
46 |
+
theme=gr.themes.Soft(),
|
47 |
+
streaming=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
|
|
|
50 |
if __name__ == "__main__":
|
51 |
+
demo.launch(share=True)
|