orangewong commited on
Commit
e719f54
·
verified ·
1 Parent(s): 3232a8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -56
app.py CHANGED
@@ -1,64 +1,51 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+ import spaces
5
+
6
+
7
+ model_name = "Zhihu-ai/Zhi-writing-dsr1-14"
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
9
+ model = AutoModelForCausalLM.from_pretrained(
10
+ model_name,
11
+ torch_dtype=torch.float16,
12
+ device_map="auto",
13
+ trust_remote_code=True
14
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ @spaces.GPU()
17
+ def predict(message, history):
18
+
19
+ history_text = ""
20
+ for human, assistant in history:
21
+ history_text += f"Human: {human}\nAssistant: {assistant}\n"
22
+ prompt = f"{history_text}Human: {message}\nAssistant:"
23
+
24
+ # 生成回复
25
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
26
+
27
+ # 使用流式生成
28
+ for response in model.generate(
29
+ **inputs,
30
+ max_new_tokens=10000,
31
+ do_sample=True,
32
+ temperature=0.7,
33
+ top_p=0.9,
34
+ repetition_penalty=1.1,
35
+ pad_token_id=tokenizer.eos_token_id,
36
+ streamer=gr.TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
37
  ):
38
+ yield response.strip()
 
 
 
39
 
40
+ # 创建Gradio界面
 
 
 
41
  demo = gr.ChatInterface(
42
+ predict,
43
+ title="Zhi-writing-dsr1-14",
44
+ description="这是一个基于Zhi-writing-dsr1-14的文章生成器。",
45
+ examples=["以鲁迅口吻写一篇500字关于桔了个仔的散文", "用知乎常见的表达方式讲讲什么是AI?", "告诉我一个我大概率不知道的人生哲理"],
46
+ theme=gr.themes.Soft(),
47
+ streaming=True
 
 
 
 
 
 
 
48
  )
49
 
 
50
  if __name__ == "__main__":
51
+ demo.launch(share=True)