import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import spaces # 加载模型和分词器 model_name = "Zhihu-ai/Zhi-writing-dsr1-14b" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) @spaces.GPU() def predict(message, history): # 构建输入 history_text = "" for human, assistant in history: history_text += f"Human: {human}\nAssistant: {assistant}\n" prompt = f"{history_text}Human: {message}\nAssistant:" # 生成回复 inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=10000, do_sample=True, temperature=0.7, top_p=0.9, repetition_penalty=1.1, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) return response.strip() # 创建Gradio界面 demo = gr.ChatInterface( predict, title="测试Zhi-writing-dsr1-14b", description="Zhihu-ai/Zhi-writing-dsr1-14b", examples=["鲁迅口吻写五百字,描述桔猫的可爱!", "桔了个仔是谁", "介绍自己"], theme=gr.themes.Soft() ) # with gr.Blocks(theme=gr.themes.Soft()) as demo: # gr.Markdown("# Zhi-writing-dsr1-14") # gr.Markdown("这是一个基于Zhi-writing-dsr1-14的文章生成器") # chatbot = gr.Chatbot() # msg = gr.Textbox(label="输入消息") # clear = gr.Button("清除对话") # def respond(message, chat_history): # bot_message = "" # for response in predict(message, chat_history): # bot_message = response # chat_history.append((message, bot_message)) # yield chat_history # return "", chat_history # msg.submit(respond, [msg, chatbot], [msg, chatbot]) # clear.click(lambda: None, None, chatbot, queue=False) if __name__ == "__main__": demo.launch(share=True)