File size: 10,049 Bytes
5c090ee
de87f7e
5c090ee
de87f7e
 
5c090ee
de87f7e
5c090ee
de87f7e
 
 
5c090ee
c37921c
5c090ee
de87f7e
 
 
 
 
 
 
7ed33de
de87f7e
 
5c090ee
de87f7e
 
 
 
 
 
7ed33de
de87f7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ed33de
de87f7e
5c090ee
 
de87f7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c090ee
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gradio as gr
from transformers import AutoModel, AutoConfig
import torch
import json
from collections import defaultdict, OrderedDict

def analyze_model_parameters(model_path, show_layer_details=False):
    try:
        # Load model configuration first
        config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
        
        # Load model on CPU
        model = AutoModel.from_pretrained(model_path, device_map="cpu", trust_remote_code=True)
        
        # Initialize counters
        total_params = 0
        trainable_params = 0
        embedding_params = 0
        non_embedding_params = 0
        
        # Track unique parameters to handle weight tying
        unique_params = {}
        param_details = []
        layer_breakdown = defaultdict(lambda: {'total': 0, 'trainable': 0, 'params': []})
        
        # Embedding layer patterns (common names for embedding layers)
        embedding_patterns = [
            'embeddings', 'embed', 'wte', 'wpe', 'word_embedding', 
            'position_embedding', 'token_embedding', 'embed_tokens',
            'embed_positions', 'embed_layer_norm'
        ]
        
        def is_embedding_param(name):
            name_lower = name.lower()
            return any(pattern in name_lower for pattern in embedding_patterns)
        
        def get_layer_name(param_name):
            """Extract layer information from parameter name"""
            parts = param_name.split('.')
            if len(parts) >= 2:
                # Handle common transformer architectures
                if 'layer' in parts or 'layers' in parts:
                    for i, part in enumerate(parts):
                        if part in ['layer', 'layers'] and i + 1 < len(parts):
                            try:
                                layer_num = int(parts[i + 1])
                                return f"Layer {layer_num}"
                            except ValueError:
                                pass
                # Handle other patterns
                if 'encoder' in parts:
                    return "Encoder"
                elif 'decoder' in parts:
                    return "Decoder"
                elif any(emb in param_name.lower() for emb in embedding_patterns):
                    return "Embeddings"
                elif 'classifier' in param_name.lower() or 'head' in param_name.lower():
                    return "Classification Head"
                elif 'pooler' in param_name.lower():
                    return "Pooler"
                elif 'ln' in param_name.lower() or 'norm' in param_name.lower():
                    return "Layer Norm"
            return "Other"
        
        # Analyze all parameters
        for name, param in model.named_parameters():
            param_size = param.numel()
            is_trainable = param.requires_grad
            is_embedding = is_embedding_param(name)
            layer_name = get_layer_name(name)
            
            # Handle weight tying by using data pointer
            ptr = param.data_ptr()
            if ptr not in unique_params:
                unique_params[ptr] = {
                    'name': name,
                    'size': param_size,
                    'trainable': is_trainable,
                    'embedding': is_embedding,
                    'layer': layer_name,
                    'shape': list(param.shape)
                }
                
                # Add to totals
                total_params += param_size
                if is_trainable:
                    trainable_params += param_size
                if is_embedding:
                    embedding_params += param_size
                else:
                    non_embedding_params += param_size
                    
                # Add to layer breakdown
                layer_breakdown[layer_name]['total'] += param_size
                if is_trainable:
                    layer_breakdown[layer_name]['trainable'] += param_size
                
            # Add parameter details
            param_details.append({
                'name': name,
                'shape': list(param.shape),
                'size': param_size,
                'trainable': is_trainable,
                'embedding': is_embedding,
                'layer': layer_name,
                'shared': ptr in [p['ptr'] for p in param_details if 'ptr' in p],
                'ptr': ptr
            })
            
            # Add to layer breakdown details
            layer_breakdown[layer_name]['params'].append({
                'name': name,
                'shape': list(param.shape),
                'size': param_size,
                'trainable': is_trainable
            })
        
        # Format the summary
        summary = f"""
πŸ” **MODEL ANALYSIS: {model_path}**

πŸ“Š **PARAMETER SUMMARY**
β”œβ”€β”€ Total Parameters: {total_params:,}
β”œβ”€β”€ Trainable Parameters: {trainable_params:,}
β”œβ”€β”€ Non-trainable Parameters: {total_params - trainable_params:,}
└── Trainable Percentage: {(trainable_params/total_params*100):.1f}%

🧠 **PARAMETER BREAKDOWN**
β”œβ”€β”€ Embedding Parameters: {embedding_params:,} ({embedding_params/total_params*100:.1f}%)
└── Non-embedding Parameters: {non_embedding_params:,} ({non_embedding_params/total_params*100:.1f}%)

πŸ“‹ **MODEL INFO**
β”œβ”€β”€ Model Type: {config.model_type if hasattr(config, 'model_type') else 'Unknown'}
β”œβ”€β”€ Architecture: {config.architectures[0] if hasattr(config, 'architectures') and config.architectures else 'Unknown'}
└── Hidden Size: {getattr(config, 'hidden_size', 'Unknown')}
"""

        # Add layer breakdown summary
        if layer_breakdown:
            summary += "\nπŸ—οΈ **LAYER BREAKDOWN SUMMARY**\n"
            sorted_layers = sorted(layer_breakdown.items(), key=lambda x: (
                0 if x[0] == "Embeddings" else
                1 if x[0].startswith("Layer") else
                2 if x[0] == "Layer Norm" else
                3 if x[0] == "Pooler" else
                4 if x[0] == "Classification Head" else 5
            ))
            
            for layer_name, info in sorted_layers:
                percentage = info['total'] / total_params * 100
                summary += f"β”œβ”€β”€ {layer_name}: {info['total']:,} params ({percentage:.1f}%)\n"
        
        # Detailed layer breakdown if requested
        layer_details = ""
        if show_layer_details:
            layer_details = "\n" + "="*60 + "\n"
            layer_details += "πŸ” **DETAILED LAYER-BY-LAYER BREAKDOWN**\n"
            layer_details += "="*60 + "\n"
            
            for layer_name, info in sorted_layers:
                layer_details += f"\nπŸ“ **{layer_name.upper()}**\n"
                layer_details += f"   Total: {info['total']:,} | Trainable: {info['trainable']:,}\n"
                layer_details += f"   Parameters:\n"
                
                for param_info in info['params']:
                    trainable_mark = "βœ“" if param_info['trainable'] else "βœ—"
                    layer_details += f"   {trainable_mark} {param_info['name']}: {param_info['shape']} β†’ {param_info['size']:,}\n"
        
        return summary + layer_details
        
    except Exception as e:
        return f"❌ **Error loading model:** {str(e)}\n\nPlease check that the model path is correct and the model is accessible."

def count_parameters_basic(model_path):
    """Basic parameter counting without layer details"""
    return analyze_model_parameters(model_path, show_layer_details=False)

def count_parameters_detailed(model_path):
    """Detailed parameter counting with layer-by-layer breakdown"""
    return analyze_model_parameters(model_path, show_layer_details=True)

# Create Gradio interface with multiple outputs
with gr.Blocks(title="πŸ€— Advanced HuggingFace Model Parameter Analyzer", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # πŸ€— Advanced HuggingFace Model Parameter Analyzer
    
    Enter any HuggingFace model path to get detailed parameter analysis including:
    - **Total & trainable parameter counts**
    - **Embedding vs non-embedding breakdown** 
    - **Layer-by-layer analysis**
    - **Weight sharing detection**
    """)
    
    with gr.Row():
        with gr.Column(scale=2):
            model_input = gr.Textbox(
                label="πŸ” HuggingFace Model Path",
                placeholder="e.g., bert-base-uncased, gpt2, microsoft/DialoGPT-medium",
                value="bert-base-uncased"
            )
            
        with gr.Column(scale=1):
            analyze_btn = gr.Button("πŸ“Š Analyze Model", variant="primary")
            detailed_btn = gr.Button("πŸ” Detailed Analysis", variant="secondary")
    
    output_text = gr.Textbox(
        label="πŸ“‹ Analysis Results",
        lines=20,
        max_lines=50,
        show_copy_button=True
    )
    
    # Event handlers
    analyze_btn.click(
        fn=count_parameters_basic,
        inputs=model_input,
        outputs=output_text
    )
    
    detailed_btn.click(
        fn=count_parameters_detailed,
        inputs=model_input,
        outputs=output_text
    )
    
    # Example models
    gr.Examples(
        examples=[
            ["bert-base-uncased"],
            ["gpt2"],
            ["roberta-base"],
            ["distilbert-base-uncased"],
            ["microsoft/DialoGPT-medium"],
            ["facebook/bart-base"],
            ["t5-small"],
            ["google/flan-t5-small"]
        ],
        inputs=model_input,
        label="🎯 Example Models"
    )
    
    gr.Markdown("""
    ### πŸ“ Notes:
    - **Weight tying detection**: Automatically handles shared parameters (e.g., input/output embeddings)
    - **Layer categorization**: Groups parameters by transformer layers, embeddings, etc.
    - **Detailed analysis**: Click "Detailed Analysis" for parameter-by-parameter breakdown
    - **Model compatibility**: Works with most HuggingFace transformer models
    """)

if __name__ == "__main__":
    demo.launch()