Spaces:
Running
Running
File size: 10,049 Bytes
5c090ee de87f7e 5c090ee de87f7e 5c090ee de87f7e 5c090ee de87f7e 5c090ee c37921c 5c090ee de87f7e 7ed33de de87f7e 5c090ee de87f7e 7ed33de de87f7e 7ed33de de87f7e 5c090ee de87f7e 5c090ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
from transformers import AutoModel, AutoConfig
import torch
import json
from collections import defaultdict, OrderedDict
def analyze_model_parameters(model_path, show_layer_details=False):
try:
# Load model configuration first
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
# Load model on CPU
model = AutoModel.from_pretrained(model_path, device_map="cpu", trust_remote_code=True)
# Initialize counters
total_params = 0
trainable_params = 0
embedding_params = 0
non_embedding_params = 0
# Track unique parameters to handle weight tying
unique_params = {}
param_details = []
layer_breakdown = defaultdict(lambda: {'total': 0, 'trainable': 0, 'params': []})
# Embedding layer patterns (common names for embedding layers)
embedding_patterns = [
'embeddings', 'embed', 'wte', 'wpe', 'word_embedding',
'position_embedding', 'token_embedding', 'embed_tokens',
'embed_positions', 'embed_layer_norm'
]
def is_embedding_param(name):
name_lower = name.lower()
return any(pattern in name_lower for pattern in embedding_patterns)
def get_layer_name(param_name):
"""Extract layer information from parameter name"""
parts = param_name.split('.')
if len(parts) >= 2:
# Handle common transformer architectures
if 'layer' in parts or 'layers' in parts:
for i, part in enumerate(parts):
if part in ['layer', 'layers'] and i + 1 < len(parts):
try:
layer_num = int(parts[i + 1])
return f"Layer {layer_num}"
except ValueError:
pass
# Handle other patterns
if 'encoder' in parts:
return "Encoder"
elif 'decoder' in parts:
return "Decoder"
elif any(emb in param_name.lower() for emb in embedding_patterns):
return "Embeddings"
elif 'classifier' in param_name.lower() or 'head' in param_name.lower():
return "Classification Head"
elif 'pooler' in param_name.lower():
return "Pooler"
elif 'ln' in param_name.lower() or 'norm' in param_name.lower():
return "Layer Norm"
return "Other"
# Analyze all parameters
for name, param in model.named_parameters():
param_size = param.numel()
is_trainable = param.requires_grad
is_embedding = is_embedding_param(name)
layer_name = get_layer_name(name)
# Handle weight tying by using data pointer
ptr = param.data_ptr()
if ptr not in unique_params:
unique_params[ptr] = {
'name': name,
'size': param_size,
'trainable': is_trainable,
'embedding': is_embedding,
'layer': layer_name,
'shape': list(param.shape)
}
# Add to totals
total_params += param_size
if is_trainable:
trainable_params += param_size
if is_embedding:
embedding_params += param_size
else:
non_embedding_params += param_size
# Add to layer breakdown
layer_breakdown[layer_name]['total'] += param_size
if is_trainable:
layer_breakdown[layer_name]['trainable'] += param_size
# Add parameter details
param_details.append({
'name': name,
'shape': list(param.shape),
'size': param_size,
'trainable': is_trainable,
'embedding': is_embedding,
'layer': layer_name,
'shared': ptr in [p['ptr'] for p in param_details if 'ptr' in p],
'ptr': ptr
})
# Add to layer breakdown details
layer_breakdown[layer_name]['params'].append({
'name': name,
'shape': list(param.shape),
'size': param_size,
'trainable': is_trainable
})
# Format the summary
summary = f"""
π **MODEL ANALYSIS: {model_path}**
π **PARAMETER SUMMARY**
βββ Total Parameters: {total_params:,}
βββ Trainable Parameters: {trainable_params:,}
βββ Non-trainable Parameters: {total_params - trainable_params:,}
βββ Trainable Percentage: {(trainable_params/total_params*100):.1f}%
π§ **PARAMETER BREAKDOWN**
βββ Embedding Parameters: {embedding_params:,} ({embedding_params/total_params*100:.1f}%)
βββ Non-embedding Parameters: {non_embedding_params:,} ({non_embedding_params/total_params*100:.1f}%)
π **MODEL INFO**
βββ Model Type: {config.model_type if hasattr(config, 'model_type') else 'Unknown'}
βββ Architecture: {config.architectures[0] if hasattr(config, 'architectures') and config.architectures else 'Unknown'}
βββ Hidden Size: {getattr(config, 'hidden_size', 'Unknown')}
"""
# Add layer breakdown summary
if layer_breakdown:
summary += "\nποΈ **LAYER BREAKDOWN SUMMARY**\n"
sorted_layers = sorted(layer_breakdown.items(), key=lambda x: (
0 if x[0] == "Embeddings" else
1 if x[0].startswith("Layer") else
2 if x[0] == "Layer Norm" else
3 if x[0] == "Pooler" else
4 if x[0] == "Classification Head" else 5
))
for layer_name, info in sorted_layers:
percentage = info['total'] / total_params * 100
summary += f"βββ {layer_name}: {info['total']:,} params ({percentage:.1f}%)\n"
# Detailed layer breakdown if requested
layer_details = ""
if show_layer_details:
layer_details = "\n" + "="*60 + "\n"
layer_details += "π **DETAILED LAYER-BY-LAYER BREAKDOWN**\n"
layer_details += "="*60 + "\n"
for layer_name, info in sorted_layers:
layer_details += f"\nπ **{layer_name.upper()}**\n"
layer_details += f" Total: {info['total']:,} | Trainable: {info['trainable']:,}\n"
layer_details += f" Parameters:\n"
for param_info in info['params']:
trainable_mark = "β" if param_info['trainable'] else "β"
layer_details += f" {trainable_mark} {param_info['name']}: {param_info['shape']} β {param_info['size']:,}\n"
return summary + layer_details
except Exception as e:
return f"β **Error loading model:** {str(e)}\n\nPlease check that the model path is correct and the model is accessible."
def count_parameters_basic(model_path):
"""Basic parameter counting without layer details"""
return analyze_model_parameters(model_path, show_layer_details=False)
def count_parameters_detailed(model_path):
"""Detailed parameter counting with layer-by-layer breakdown"""
return analyze_model_parameters(model_path, show_layer_details=True)
# Create Gradio interface with multiple outputs
with gr.Blocks(title="π€ Advanced HuggingFace Model Parameter Analyzer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π€ Advanced HuggingFace Model Parameter Analyzer
Enter any HuggingFace model path to get detailed parameter analysis including:
- **Total & trainable parameter counts**
- **Embedding vs non-embedding breakdown**
- **Layer-by-layer analysis**
- **Weight sharing detection**
""")
with gr.Row():
with gr.Column(scale=2):
model_input = gr.Textbox(
label="π HuggingFace Model Path",
placeholder="e.g., bert-base-uncased, gpt2, microsoft/DialoGPT-medium",
value="bert-base-uncased"
)
with gr.Column(scale=1):
analyze_btn = gr.Button("π Analyze Model", variant="primary")
detailed_btn = gr.Button("π Detailed Analysis", variant="secondary")
output_text = gr.Textbox(
label="π Analysis Results",
lines=20,
max_lines=50,
show_copy_button=True
)
# Event handlers
analyze_btn.click(
fn=count_parameters_basic,
inputs=model_input,
outputs=output_text
)
detailed_btn.click(
fn=count_parameters_detailed,
inputs=model_input,
outputs=output_text
)
# Example models
gr.Examples(
examples=[
["bert-base-uncased"],
["gpt2"],
["roberta-base"],
["distilbert-base-uncased"],
["microsoft/DialoGPT-medium"],
["facebook/bart-base"],
["t5-small"],
["google/flan-t5-small"]
],
inputs=model_input,
label="π― Example Models"
)
gr.Markdown("""
### π Notes:
- **Weight tying detection**: Automatically handles shared parameters (e.g., input/output embeddings)
- **Layer categorization**: Groups parameters by transformer layers, embeddings, etc.
- **Detailed analysis**: Click "Detailed Analysis" for parameter-by-parameter breakdown
- **Model compatibility**: Works with most HuggingFace transformer models
""")
if __name__ == "__main__":
demo.launch() |