Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,13 +4,18 @@ import torch
|
|
4 |
import json
|
5 |
from collections import defaultdict, OrderedDict
|
6 |
|
7 |
-
def analyze_model_parameters(model_path, show_layer_details=False):
|
8 |
try:
|
|
|
|
|
|
|
|
|
|
|
9 |
# Load model configuration first
|
10 |
-
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
11 |
|
12 |
# Load model on CPU
|
13 |
-
model = AutoModel.from_pretrained(model_path, device_map="cpu", trust_remote_code=True)
|
14 |
|
15 |
# Initialize counters
|
16 |
total_params = 0
|
@@ -169,15 +174,21 @@ def analyze_model_parameters(model_path, show_layer_details=False):
|
|
169 |
return summary + layer_details
|
170 |
|
171 |
except Exception as e:
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
def count_parameters_basic(model_path):
|
175 |
"""Basic parameter counting without layer details"""
|
176 |
-
return analyze_model_parameters(model_path, show_layer_details=False)
|
177 |
|
178 |
-
def count_parameters_detailed(model_path):
|
179 |
"""Detailed parameter counting with layer-by-layer breakdown"""
|
180 |
-
return analyze_model_parameters(model_path, show_layer_details=True)
|
181 |
|
182 |
# Create Gradio interface with multiple outputs
|
183 |
with gr.Blocks(title="π€ Advanced HuggingFace Model Parameter Analyzer", theme=gr.themes.Soft()) as demo:
|
@@ -189,6 +200,7 @@ with gr.Blocks(title="π€ Advanced HuggingFace Model Parameter Analyzer", theme
|
|
189 |
- **Embedding vs non-embedding breakdown**
|
190 |
- **Layer-by-layer analysis**
|
191 |
- **Weight sharing detection**
|
|
|
192 |
""")
|
193 |
|
194 |
with gr.Row():
|
@@ -200,8 +212,16 @@ with gr.Blocks(title="π€ Advanced HuggingFace Model Parameter Analyzer", theme
|
|
200 |
)
|
201 |
|
202 |
with gr.Column(scale=1):
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
output_text = gr.Textbox(
|
207 |
label="π Analysis Results",
|
@@ -213,13 +233,13 @@ with gr.Blocks(title="π€ Advanced HuggingFace Model Parameter Analyzer", theme
|
|
213 |
# Event handlers
|
214 |
analyze_btn.click(
|
215 |
fn=count_parameters_basic,
|
216 |
-
inputs=model_input,
|
217 |
outputs=output_text
|
218 |
)
|
219 |
|
220 |
detailed_btn.click(
|
221 |
fn=count_parameters_detailed,
|
222 |
-
inputs=model_input,
|
223 |
outputs=output_text
|
224 |
)
|
225 |
|
@@ -244,6 +264,8 @@ with gr.Blocks(title="π€ Advanced HuggingFace Model Parameter Analyzer", theme
|
|
244 |
- **Weight tying detection**: Automatically handles shared parameters (e.g., input/output embeddings)
|
245 |
- **Layer categorization**: Groups parameters by transformer layers, embeddings, etc.
|
246 |
- **Detailed analysis**: Click "Detailed Analysis" for parameter-by-parameter breakdown
|
|
|
|
|
247 |
- **Model compatibility**: Works with most HuggingFace transformer models
|
248 |
""")
|
249 |
|
|
|
4 |
import json
|
5 |
from collections import defaultdict, OrderedDict
|
6 |
|
7 |
+
def analyze_model_parameters(model_path, hf_token=None, show_layer_details=False):
|
8 |
try:
|
9 |
+
# Prepare token parameter
|
10 |
+
token_kwargs = {}
|
11 |
+
if hf_token and hf_token.strip():
|
12 |
+
token_kwargs['token'] = hf_token.strip()
|
13 |
+
|
14 |
# Load model configuration first
|
15 |
+
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, **token_kwargs)
|
16 |
|
17 |
# Load model on CPU
|
18 |
+
model = AutoModel.from_pretrained(model_path, device_map="cpu", trust_remote_code=True, **token_kwargs)
|
19 |
|
20 |
# Initialize counters
|
21 |
total_params = 0
|
|
|
174 |
return summary + layer_details
|
175 |
|
176 |
except Exception as e:
|
177 |
+
error_msg = str(e)
|
178 |
+
if "401" in error_msg or "authentication" in error_msg.lower():
|
179 |
+
return f"π **Authentication Error:** This model requires a valid HuggingFace token.\n\nPlease provide your HuggingFace token in the token field above.\n\nOriginal error: {error_msg}"
|
180 |
+
elif "404" in error_msg or "not found" in error_msg.lower():
|
181 |
+
return f"π **Model Not Found:** The model '{model_path}' was not found.\n\nPlease check:\n- Model path is correct\n- Model exists on HuggingFace Hub\n- You have access to the model (use token if private)\n\nOriginal error: {error_msg}"
|
182 |
+
else:
|
183 |
+
return f"β **Error loading model:** {error_msg}\n\nPlease check that the model path is correct and accessible."
|
184 |
|
185 |
+
def count_parameters_basic(model_path, hf_token=None):
|
186 |
"""Basic parameter counting without layer details"""
|
187 |
+
return analyze_model_parameters(model_path, hf_token, show_layer_details=False)
|
188 |
|
189 |
+
def count_parameters_detailed(model_path, hf_token=None):
|
190 |
"""Detailed parameter counting with layer-by-layer breakdown"""
|
191 |
+
return analyze_model_parameters(model_path, hf_token, show_layer_details=True)
|
192 |
|
193 |
# Create Gradio interface with multiple outputs
|
194 |
with gr.Blocks(title="π€ Advanced HuggingFace Model Parameter Analyzer", theme=gr.themes.Soft()) as demo:
|
|
|
200 |
- **Embedding vs non-embedding breakdown**
|
201 |
- **Layer-by-layer analysis**
|
202 |
- **Weight sharing detection**
|
203 |
+
- **Private model access** with HuggingFace token
|
204 |
""")
|
205 |
|
206 |
with gr.Row():
|
|
|
212 |
)
|
213 |
|
214 |
with gr.Column(scale=1):
|
215 |
+
hf_token_input = gr.Textbox(
|
216 |
+
label="π HuggingFace Token (Optional)",
|
217 |
+
placeholder="hf_...",
|
218 |
+
type="password",
|
219 |
+
info="Required for private models or gated models"
|
220 |
+
)
|
221 |
+
|
222 |
+
with gr.Row():
|
223 |
+
analyze_btn = gr.Button("π Analyze Model", variant="primary")
|
224 |
+
detailed_btn = gr.Button("π Detailed Analysis", variant="secondary")
|
225 |
|
226 |
output_text = gr.Textbox(
|
227 |
label="π Analysis Results",
|
|
|
233 |
# Event handlers
|
234 |
analyze_btn.click(
|
235 |
fn=count_parameters_basic,
|
236 |
+
inputs=[model_input, hf_token_input],
|
237 |
outputs=output_text
|
238 |
)
|
239 |
|
240 |
detailed_btn.click(
|
241 |
fn=count_parameters_detailed,
|
242 |
+
inputs=[model_input, hf_token_input],
|
243 |
outputs=output_text
|
244 |
)
|
245 |
|
|
|
264 |
- **Weight tying detection**: Automatically handles shared parameters (e.g., input/output embeddings)
|
265 |
- **Layer categorization**: Groups parameters by transformer layers, embeddings, etc.
|
266 |
- **Detailed analysis**: Click "Detailed Analysis" for parameter-by-parameter breakdown
|
267 |
+
- **Private models**: Use your HuggingFace token to access private or gated models
|
268 |
+
- **Token security**: Token is only used for this session and not stored
|
269 |
- **Model compatibility**: Works with most HuggingFace transformer models
|
270 |
""")
|
271 |
|