Spaces:
Sleeping
Sleeping
Commit
·
a667370
1
Parent(s):
798b478
fix cpu
Browse files
app.py
CHANGED
@@ -38,13 +38,23 @@ datasets = ["scifact"]
|
|
38 |
current_dataset = "scifact"
|
39 |
|
40 |
|
41 |
-
def pool(last_hidden_states, attention_mask):
|
42 |
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
43 |
-
sequence_lengths = attention_mask.sum(dim=1) - 1
|
44 |
-
batch_size = last_hidden.shape[0]
|
45 |
-
return last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
batch_dict = tokenizer(
|
49 |
input_texts,
|
50 |
max_length=max_length - 1,
|
@@ -53,7 +63,10 @@ def create_batch_dict(tokenizer, input_texts, max_length=512):
|
|
53 |
padding=False,
|
54 |
truncation=True
|
55 |
)
|
56 |
-
|
|
|
|
|
|
|
57 |
return tokenizer.pad(
|
58 |
batch_dict,
|
59 |
padding=True,
|
@@ -62,18 +75,44 @@ def create_batch_dict(tokenizer, input_texts, max_length=512):
|
|
62 |
return_tensors="pt",
|
63 |
)
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
def load_faiss_index(dataset_name):
|
@@ -128,31 +167,6 @@ def load_queries(dataset_name):
|
|
128 |
qrels[dataset_name][qrel.query_id] = {}
|
129 |
qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance
|
130 |
|
131 |
-
@spaces.GPU
|
132 |
-
def encode_queries(dataset_name, postfix):
|
133 |
-
global queries, tokenizer, model
|
134 |
-
input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[dataset_name]]
|
135 |
-
|
136 |
-
encoded_embeds = []
|
137 |
-
batch_size = 32
|
138 |
-
model = model.cuda()
|
139 |
-
|
140 |
-
for start_idx in tqdm.tqdm(range(0, len(input_texts), batch_size), desc="Encoding queries"):
|
141 |
-
batch_input_texts = input_texts[start_idx: start_idx + batch_size]
|
142 |
-
|
143 |
-
batch_dict = create_batch_dict(tokenizer, batch_input_texts)
|
144 |
-
batch_dict = {k: v.to(model.device) for k, v in batch_dict.items()}
|
145 |
-
|
146 |
-
with torch.cuda.amp.autocast():
|
147 |
-
with torch.no_grad():
|
148 |
-
outputs = model(**batch_dict)
|
149 |
-
embeds = pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
150 |
-
embeds = F.normalize(embeds, p=2, dim=-1)
|
151 |
-
encoded_embeds.append(embeds.float().cpu().numpy())
|
152 |
-
|
153 |
-
model = model.cpu()
|
154 |
-
return np.concatenate(encoded_embeds, axis=0)
|
155 |
-
|
156 |
|
157 |
def evaluate(qrels, results, k_values):
|
158 |
evaluator = pytrec_eval.RelevanceEvaluator(
|
@@ -168,15 +182,11 @@ def evaluate(qrels, results, k_values):
|
|
168 |
return metrics
|
169 |
|
170 |
def run_evaluation(dataset, postfix):
|
171 |
-
global current_dataset
|
172 |
-
|
173 |
-
if dataset not in corpus_lookups or dataset not in queries:
|
174 |
-
load_corpus_lookups(dataset)
|
175 |
-
load_queries(dataset)
|
176 |
-
|
177 |
current_dataset = dataset
|
178 |
-
|
179 |
-
|
|
|
180 |
all_scores, psg_indices = search_queries(dataset, q_reps)
|
181 |
|
182 |
results = {qid: dict(zip(doc_ids, map(float, scores)))
|
@@ -189,16 +199,18 @@ def run_evaluation(dataset, postfix):
|
|
189 |
"Recall@100": metrics["Recall@100"]
|
190 |
}
|
191 |
|
192 |
-
def gradio_interface(dataset, postfix):
|
193 |
-
if 'model' not in globals() or model is None:
|
194 |
-
load_model()
|
195 |
-
for dataset in datasets:
|
196 |
-
print(f"Loading dataset: {dataset}")
|
197 |
-
load_corpus_lookups(dataset)
|
198 |
-
load_queries(dataset)
|
199 |
|
|
|
|
|
200 |
return run_evaluation(dataset, postfix)
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
# Create Gradio interface
|
203 |
iface = gr.Interface(
|
204 |
fn=gradio_interface,
|
|
|
38 |
current_dataset = "scifact"
|
39 |
|
40 |
|
41 |
+
def pool(last_hidden_states, attention_mask, pool_type="last"):
|
42 |
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
|
|
|
|
|
|
43 |
|
44 |
+
if pool_type == "last":
|
45 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
46 |
+
if left_padding:
|
47 |
+
emb = last_hidden[:, -1]
|
48 |
+
else:
|
49 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
50 |
+
batch_size = last_hidden.shape[0]
|
51 |
+
emb = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
|
52 |
+
else:
|
53 |
+
raise ValueError(f"pool_type {pool_type} not supported")
|
54 |
+
|
55 |
+
return emb
|
56 |
+
|
57 |
+
def create_batch_dict(tokenizer, input_texts, always_add_eos="last", max_length=512):
|
58 |
batch_dict = tokenizer(
|
59 |
input_texts,
|
60 |
max_length=max_length - 1,
|
|
|
63 |
padding=False,
|
64 |
truncation=True
|
65 |
)
|
66 |
+
|
67 |
+
if always_add_eos == "last":
|
68 |
+
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
|
69 |
+
|
70 |
return tokenizer.pad(
|
71 |
batch_dict,
|
72 |
padding=True,
|
|
|
75 |
return_tensors="pt",
|
76 |
)
|
77 |
|
78 |
+
class RepLlamaModel:
|
79 |
+
def __init__(self, model_name_or_path):
|
80 |
+
self.base_model = "meta-llama/Llama-2-7b-hf"
|
81 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model)
|
82 |
+
self.tokenizer.model_max_length = 2048
|
83 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
84 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
85 |
+
self.tokenizer.padding_side = "right"
|
86 |
+
|
87 |
+
self.model = self.get_model(model_name_or_path)
|
88 |
+
self.model.config.max_length = 2048
|
89 |
+
|
90 |
+
def get_model(self, peft_model_name):
|
91 |
+
base_model = AutoModel.from_pretrained(self.base_model)
|
92 |
+
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
93 |
+
model = model.merge_and_unload()
|
94 |
+
model.eval()
|
95 |
+
return model
|
96 |
+
|
97 |
+
@spaces.GPU
|
98 |
+
def encode(self, texts, batch_size=32, **kwargs):
|
99 |
+
self.model = self.model.cuda()
|
100 |
+
all_embeddings = []
|
101 |
+
for i in range(0, len(texts), batch_size):
|
102 |
+
batch_texts = texts[i:i+batch_size]
|
103 |
+
|
104 |
+
batch_dict = create_batch_dict(self.tokenizer, batch_texts, always_add_eos="last")
|
105 |
+
batch_dict = {key: value.cuda() for key, value in batch_dict.items()}
|
106 |
+
|
107 |
+
with torch.cuda.amp.autocast():
|
108 |
+
with torch.no_grad():
|
109 |
+
outputs = self.model(**batch_dict)
|
110 |
+
embeddings = pool(outputs.last_hidden_state, batch_dict['attention_mask'], 'last')
|
111 |
+
embeddings = F.normalize(embeddings, p=2, dim=-1)
|
112 |
+
all_embeddings.append(embeddings.cpu().numpy())
|
113 |
+
|
114 |
+
self.model = self.model.cpu()
|
115 |
+
return np.concatenate(all_embeddings, axis=0)
|
116 |
|
117 |
|
118 |
def load_faiss_index(dataset_name):
|
|
|
167 |
qrels[dataset_name][qrel.query_id] = {}
|
168 |
qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
def evaluate(qrels, results, k_values):
|
172 |
evaluator = pytrec_eval.RelevanceEvaluator(
|
|
|
182 |
return metrics
|
183 |
|
184 |
def run_evaluation(dataset, postfix):
|
185 |
+
global current_dataset, queries, model
|
|
|
|
|
|
|
|
|
|
|
186 |
current_dataset = dataset
|
187 |
+
|
188 |
+
input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[current_dataset]]
|
189 |
+
q_reps = model.encode(input_texts)
|
190 |
all_scores, psg_indices = search_queries(dataset, q_reps)
|
191 |
|
192 |
results = {qid: dict(zip(doc_ids, map(float, scores)))
|
|
|
199 |
"Recall@100": metrics["Recall@100"]
|
200 |
}
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
+
@spaces.GPU
|
204 |
+
def gradio_interface(dataset, postfix):
|
205 |
return run_evaluation(dataset, postfix)
|
206 |
|
207 |
+
|
208 |
+
if model is None:
|
209 |
+
model = RepLlamaModel(model_name_or_path=CUR_MODEL)
|
210 |
+
load_corpus_lookups(current_dataset)
|
211 |
+
load_queries(current_dataset)
|
212 |
+
|
213 |
+
|
214 |
# Create Gradio interface
|
215 |
iface = gr.Interface(
|
216 |
fn=gradio_interface,
|