File size: 4,732 Bytes
399e621
b197ccc
399e621
 
b197ccc
 
 
399e621
 
 
 
 
b197ccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399e621
 
b197ccc
399e621
 
b197ccc
399e621
 
 
 
 
 
 
 
 
 
 
 
b197ccc
399e621
 
b197ccc
399e621
 
b197ccc
 
399e621
b197ccc
 
 
399e621
b197ccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399e621
b197ccc
 
 
 
 
399e621
 
 
 
 
 
 
 
 
 
 
 
b197ccc
 
399e621
 
 
 
 
 
 
 
 
 
 
 
 
 
b197ccc
 
 
 
 
399e621
 
 
 
b197ccc
 
 
 
 
 
 
 
 
 
399e621
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
from PIL import Image
import scipy.ndimage
import insightface
import torch
import scipy

# Initialize InsightFace model
face_analyzer = insightface.app.FaceAnalysis(name='buffalo_l', providers=['CPUExecutionProvider'])
face_analyzer.prepare(ctx_id=0)


def image_grid(imgs, rows, cols):
    assert len(imgs) == rows*cols

    w, h = imgs[0].size
    grid = Image.new('RGB', size=(cols*w, rows*h))
    grid_w, grid_h = grid.size
    
    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid


def get_generator(seed, device):

    if seed is not None:
        if isinstance(seed, list):
            generator = [
                torch.Generator(device).manual_seed(seed_item) for seed_item in seed
            ]
        else:
            generator = torch.Generator(device).manual_seed(seed)
    else:
        generator = None

    return generator

def get_landmark_pil_insight(pil_image):
    """Get 68 facial landmarks using InsightFace."""
    img_np = np.array(pil_image.convert("RGB"))
    faces = face_analyzer.get(img_np)
    if not faces:
        return None
    landmarks = faces[0].kps  # shape: (5, 2) or (68, 2) depending on model

    if landmarks.shape[0] < 68:
        # InsightFace returns only 5 points: [left_eye, right_eye, nose, left_mouth, right_mouth]
        left_eye, right_eye, nose, left_mouth, right_mouth = landmarks
        # Approximate 68 landmarks (basic heuristic or fallback)
        return np.array([
            left_eye, right_eye, nose, left_mouth, right_mouth
        ])
    return landmarks

def align_face(pil_image):
    """Align a face from a PIL.Image, returning an aligned PIL.Image of size 512x512."""
    lm = get_landmark_pil_insight(pil_image)
    if lm is None or lm.shape[0] < 5:
        return pil_image

    eye_left, eye_right = lm[0], lm[1]
    eye_avg = (eye_left + eye_right) * 0.5
    eye_to_eye = eye_right - eye_left
    mouth_left, mouth_right = lm[3], lm[4]
    mouth_avg = (mouth_left + mouth_right) * 0.5
    eye_to_mouth = mouth_avg - eye_avg

    # The rest is your original alignment logic
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    x /= np.hypot(*x)
    x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
    y = np.flipud(x) * [-1, 1]
    c = eye_avg + eye_to_mouth * 0.1
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    qsize = np.hypot(*x) * 2

    img = pil_image.convert("RGB")
    transform_size = 512
    output_size = 512
    enable_padding = True

    shrink = int(np.floor(qsize / output_size * 0.5))
    if shrink > 1:
        rsize = (int(np.rint(img.size[0] / shrink)), int(np.rint(img.size[1] / shrink)))
        img = img.resize(rsize, Image.Resampling.LANCZOS)
        quad /= shrink
        qsize /= shrink

    border = max(int(np.rint(qsize * 0.1)), 3)
    crop = (
        int(np.floor(min(quad[:, 0]))),
        int(np.floor(min(quad[:, 1]))),
        int(np.ceil(max(quad[:, 0]))),
        int(np.ceil(max(quad[:, 1])))
    )
    crop = (
        max(crop[0] - border, 0),
        max(crop[1] - border, 0),
        min(crop[2] + border, img.size[0]),
        min(crop[3] + border, img.size[1])
    )
    if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
        img = img.crop(crop)
        quad -= crop[:2]

    pad = (
        int(np.floor(min(quad[:, 0]))),
        int(np.floor(min(quad[:, 1]))),
        int(np.ceil(max(quad[:, 0]))),
        int(np.ceil(max(quad[:, 1])))
    )
    pad = (
        max(-pad[0] + border, 0),
        max(-pad[1] + border, 0),
        max(pad[2] - img.size[0] + border, 0),
        max(pad[3] - img.size[1] + border, 0)
    )
    if enable_padding and max(pad) > border - 4:
        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
        img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
        h, w, _ = img.shape
        y, x, _ = np.ogrid[:h, :w, :1]
        mask = np.maximum(
            1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
            1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])
        )
        blur = qsize * 0.02
        img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
        img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
        img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
        quad += pad[:2]

    img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
    if output_size < transform_size:
        img = img.resize((output_size, output_size), Image.Resampling.LANCZOS)

    return img