Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,253 Bytes
b197ccc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
from typing import List
import torch
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from nested_attention_processor import AttnProcessor, NestedAttnProcessor
from utils import get_generator
from resampler import Resampler
def add_special_token_to_tokenizer(
pipe,
placeholder_token,
initializer_token
):
num_added_tokens1 = pipe.tokenizer.add_tokens([placeholder_token])
num_added_tokens2 = pipe.tokenizer_2.add_tokens([placeholder_token])
if num_added_tokens1 != 1 or num_added_tokens2 != 1:
raise ValueError("Failed to add placeholder token to tokenizer")
token_ids1 = pipe.tokenizer.encode(initializer_token, add_special_tokens=False)
token_ids2 = pipe.tokenizer_2.encode(initializer_token, add_special_tokens=False)
if len(token_ids1) > 1 or len(token_ids2) > 1:
raise ValueError("The initializer token must be a single token.")
initializer_token_id1 = token_ids1[0]
initializer_token_id2 = token_ids2[0]
placeholder_token_ids1 = pipe.tokenizer.convert_tokens_to_ids([placeholder_token])
placeholder_token_ids2 = pipe.tokenizer_2.convert_tokens_to_ids([placeholder_token])
pipe.text_encoder.resize_token_embeddings(len(pipe.tokenizer))
pipe.text_encoder_2.resize_token_embeddings(len(pipe.tokenizer_2))
token_embeds1 = pipe.text_encoder.get_input_embeddings().weight.data
token_embeds2 = pipe.text_encoder_2.get_input_embeddings().weight.data
with torch.no_grad():
for token_id in placeholder_token_ids1:
token_embeds1[token_id] = token_embeds1[initializer_token_id1].clone()
for token_id in placeholder_token_ids2:
token_embeds2[token_id] = token_embeds2[initializer_token_id2].clone()
class NestedAdapterInference:
def __init__(
self,
sd_pipe,
image_encoder_path,
adapter_ckpt,
resampler_num_queries,
vq_normalize_factor,
device,
):
self.device = device
self.image_encoder_path = image_encoder_path
self.adapter_ckpt = adapter_ckpt
self.vq_normalize_factor = vq_normalize_factor
self.pipe = sd_pipe.to(self.device)
self.set_nested_adapter()
# load image encoder
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
self.image_encoder_path
).to(self.device, dtype=torch.float16)
self.clip_image_processor = CLIPImageProcessor()
# spatial features model
self.qformer = Resampler(
dim=self.pipe.unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=resampler_num_queries,
embedding_dim=self.image_encoder.config.hidden_size,
output_dim=self.pipe.unet.config.cross_attention_dim,
ff_mult=4,
).to(self.device, dtype=torch.float16)
if adapter_ckpt is not None:
self.load_nested_adapter()
def set_nested_adapter(self):
unet = self.pipe.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None
if name.endswith("attn1.processor")
else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor()
else:
attn_procs[name] = NestedAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
normalize_factor=self.vq_normalize_factor,
).to(self.device, dtype=torch.float16)
unet.set_attn_processor(attn_procs)
def load_nested_adapter(self):
state_dict = {"adapter_modules": {}, "qformer": {}}
f = torch.load(self.adapter_ckpt, map_location="cpu")
for key in f.keys():
if key.startswith("adapter_modules."):
state_dict["adapter_modules"][key.replace("adapter_modules.", "")] = f[
key
]
elif key.startswith("spatial_features_model."):
state_dict["qformer"][key.replace("spatial_features_model.", "")] = f[
key
]
self.qformer.load_state_dict(state_dict["qformer"])
adapter_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
adapter_layers.load_state_dict(state_dict["adapter_modules"])
@torch.inference_mode()
def get_image_embeds(self, pil_image=None, clip_image_embeds=None):
if isinstance(pil_image, Image.Image):
pil_image = [pil_image]
clip_image = self.clip_image_processor(
images=pil_image, return_tensors="pt"
).pixel_values
clip_image_embeds = self.image_encoder(
clip_image.to(self.device, dtype=torch.float16)
)
spatial_clip_image_embeds = clip_image_embeds.last_hidden_state
spatial_clip_image_embeds = spatial_clip_image_embeds[:, 1:] # remove CLS token
return spatial_clip_image_embeds
def generate(
self,
pil_image=None,
clip_image_embeds=None,
prompt=None,
placeholder_token_ids=None,
negative_prompt=None,
scale=1.0,
num_samples=4,
seed=None,
guidance_scale=5.0,
num_inference_steps=30,
multiple_images=False,
special_token_weight=1.0,
**kwargs,
):
if pil_image is not None:
num_prompts = (
1
if isinstance(pil_image, Image.Image) or multiple_images
else len(pil_image)
)
else:
num_prompts = clip_image_embeds.size(0)
if prompt is None:
prompt = "best quality, high quality"
if negative_prompt is None:
negative_prompt = (
"monochrome, lowres, bad anatomy, worst quality, low quality"
)
if not isinstance(prompt, List):
prompt = [prompt] * num_prompts
if not isinstance(negative_prompt, List):
negative_prompt = [negative_prompt] * num_prompts
text_input_ids = self.pipe.tokenizer(
prompt,
max_length=self.pipe.tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
).input_ids
special_token_indices = (text_input_ids == placeholder_token_ids[0]).nonzero()[
:, 1
]
spatial_clip_image_embeds = self.get_image_embeds(
pil_image=pil_image, clip_image_embeds=clip_image_embeds
) # (bs, 256, 1280)
with torch.no_grad():
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.pipe.encode_prompt(
prompt,
num_images_per_prompt=num_samples,
do_classifier_free_guidance=True,
negative_prompt=negative_prompt,
)
special_token_indices = (text_input_ids == placeholder_token_ids[0]).nonzero()[
:, 1
]
with torch.no_grad():
qformer_tokens_out = self.qformer(spatial_clip_image_embeds)
if multiple_images:
b, num_tokens, d = qformer_tokens_out.shape
qformer_tokens_out = qformer_tokens_out.reshape(
1, num_tokens * b, d
)
bs_embed, num_tokens, _ = qformer_tokens_out.shape
qformer_tokens_out = qformer_tokens_out.repeat(1, num_samples, 1, 1)
qformer_tokens_out = qformer_tokens_out.view(
bs_embed * num_samples, num_tokens, -1
)
qformer_tokens_out = qformer_tokens_out.repeat_interleave(2, dim=0)
cross_attention_kwargs = {
"qformer_tokens_out": qformer_tokens_out,
"special_token_indices": special_token_indices,
"special_token_weight": special_token_weight,
"inference_mode": True,
}
generator = get_generator(seed, self.device)
images = self.pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
cross_attention_kwargs=cross_attention_kwargs,
**kwargs,
).images
return images
|