File size: 12,335 Bytes
b197ccc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
import math
import torch
import torch.nn as nn
import torch.nn.functional as F


def my_scaled_dot_product_attention(
    query,
    key,
    value,
    attn_mask=None,
    dropout_p=0.0,
    is_causal=False,
    scale=None,
    special_token_weight=1.0,
    special_token_indices=None,
) -> torch.Tensor:
    """
    Computes the scaled dot-product attention with additional control over specific tokens.

    This function is a re-implementation of the scaled dot-product attention mechanism,
    designed to return both the attention map and the output of the attention operation.
    It also provides additional control via a scalar that modifies the attention map
    for specific tokens.
    """
    L, S = query.size(-2), key.size(-2)
    scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
    attn_bias = torch.zeros(L, S, dtype=query.dtype).cuda()
    if is_causal:
        assert attn_mask is None
        temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)

    if attn_mask is not None:
        if attn_mask.dtype == torch.bool:
            attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
        else:
            attn_bias += attn_mask
    attn_weight = query @ key.transpose(-2, -1) * scale_factor
    attn_weight += attn_bias
    if special_token_indices is not None and special_token_weight != 1.0:
        bs = attn_weight.shape[0]
        attn_weight[torch.arange(bs), :, :, special_token_indices] = torch.max(
            attn_weight[torch.arange(bs), :, :, special_token_indices],
            attn_weight[torch.arange(bs), :, :, special_token_indices]
            * special_token_weight,
        )

    attn_weight = torch.softmax(attn_weight, dim=-1)
    attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
    return attn_weight @ value, attn_weight


class AttnProcessor(torch.nn.Module):
    r"""
    Processor for implementing scaled dot-product attention.
    """

    def __init__(
        self,
        hidden_size=None,
        cross_attention_dim=None,
    ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

    def __call__(
        self,
        attn,
        hidden_states,
        qformer_tokens_out=None,
        special_token_indices=None,
        inference_mode=None,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
        special_token_weight=None,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(
                attention_mask, sequence_length, batch_size
            )
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(
                batch_size, attn.heads, -1, attention_mask.shape[-1]
            )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(
                encoder_hidden_states
            )

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class NestedAttnProcessor(torch.nn.Module):
    r"""
    Nested Attention processor for IP-Adapater for PyTorch 2.0.
    """

    def __init__(self, hidden_size, cross_attention_dim=None, normalize_factor=1.0):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "NestedAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )

        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim

        self.normalize_factor = normalize_factor

        self.nested_to_k = nn.Linear(
            cross_attention_dim or hidden_size, hidden_size, bias=False
        )
        self.nested_to_v = nn.Linear(
            cross_attention_dim or hidden_size, hidden_size, bias=False
        )

    def __call__(
        self,
        attn,
        hidden_states,
        qformer_tokens_out,
        special_token_indices,
        inference_mode=False,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
        special_token_weight=1.0,
    ):
        assert (
            special_token_indices.shape[0] > 0
        ), "special_token_indices should not be empty"

        # if inference mode is set to True, the code assumes that CFG is used and the first half
        # of the batch is used for the null prompt and the second half is used for the prompt

        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim
        bs = hidden_states.shape[0]

        if input_ndim == 4:
            bs, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(bs, channel, height * width).transpose(
                1, 2
            )

        bs, sequence_length, _ = (
            hidden_states.shape
            if encoder_hidden_states is None
            else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(
                attention_mask, sequence_length, bs
            )
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(
                bs, attn.heads, -1, attention_mask.shape[-1]
            )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        else:
            if attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(
                    encoder_hidden_states
                )

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(bs, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(bs, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(bs, -1, attn.heads, head_dim).transpose(1, 2)

        # nested attention
        nested_key = self.nested_to_k(qformer_tokens_out)
        nested_value = self.nested_to_v(qformer_tokens_out)

        nested_key = nested_key.view(bs, -1, attn.heads, head_dim).transpose(1, 2)
        nested_value = nested_value.view(bs, -1, attn.heads, head_dim).transpose(1, 2)

        nested_hidden_states = F.scaled_dot_product_attention(
            query,
            nested_key,
            nested_value,
            attn_mask=None,
            dropout_p=0.0,
            is_causal=False,
        )

        # normalize V_q
        textual_values_norms = torch.norm(
            value[torch.arange(bs), :, special_token_indices], dim=-1
        )
        nested_hidden_states = (
            torch.nn.functional.normalize(nested_hidden_states, p=2, dim=-1)
            * self.normalize_factor
        )
        nested_hidden_states = (
            textual_values_norms.view(bs, -1, 1, 1) * nested_hidden_states
        )

        # outer attention
        value_without_special_tokens = value.clone()
        if inference_mode:
            value_without_special_tokens[bs // 2 : bs, :, special_token_indices, :] = (
                0.0
            )
        else:
            value_without_special_tokens[
                torch.arange(bs), :, special_token_indices, :
            ] = 0.0
        hidden_states_without_special_tokens, attn_weight = (
            my_scaled_dot_product_attention(
                query,
                key,
                value_without_special_tokens,
                attn_mask=None,
                dropout_p=0.0,
                is_causal=False,
                special_token_weight=special_token_weight,
                special_token_indices=special_token_indices,
            )
        )

        # add the special token values
        if inference_mode:
            special_token_attn_weight = attn_weight[
                bs // 2 : bs, :, :, special_token_indices
            ]
        else:
            special_token_attn_weight = attn_weight[
                torch.arange(bs), :, :, special_token_indices
            ]
        if inference_mode:
            special_token_weighted_values = (
                special_token_attn_weight * nested_hidden_states[bs // 2 : bs]
            )
        else:
            special_token_weighted_values = (
                special_token_attn_weight.unsqueeze(-1) * nested_hidden_states
            )
        if inference_mode:
            hidden_states = hidden_states_without_special_tokens
            hidden_states[bs // 2 : bs] += special_token_weighted_values
        else:
            hidden_states = (
                hidden_states_without_special_tokens + special_token_weighted_values
            )

        # arrange hidden states
        hidden_states = hidden_states.transpose(1, 2).reshape(
            bs, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                bs, channel, height, width
            )

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states