Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import torch | |
from diffusers import StableDiffusionXLPipeline | |
import gradio as gr | |
from huggingface_hub import hf_hub_download, snapshot_download | |
from nested_attention_pipeline import NestedAdapterInference, add_special_token_to_tokenizer | |
from utils import align_face | |
# ---------------------- | |
# Configuration (update paths as needed) | |
# ---------------------- | |
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
image_encoder_path = snapshot_download("orpatashnik/NestedAttentionEncoder", allow_patterns=["image_encoder/**"]) | |
image_encoder_path = os.path.join(image_encoder_path, "image_encoder") | |
personalization_ckpt = hf_hub_download("orpatashnik/NestedAttentionEncoder", "personalization_encoder/model.safetensors") | |
device = "cuda" | |
# Special token settings | |
placeholder_token = "<person>" | |
initializer_token = "person" | |
# ---------------------- | |
# Load models | |
# ---------------------- | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
base_model_path, | |
torch_dtype=torch.float16, | |
) | |
add_special_token_to_tokenizer(pipe, placeholder_token, initializer_token) | |
ip_model = NestedAdapterInference( | |
pipe, | |
image_encoder_path, | |
personalization_ckpt, | |
1024, | |
vq_normalize_factor=2.0, | |
device=device | |
) | |
# Generation defaults | |
negative_prompt = "bad anatomy, monochrome, lowres, worst quality, low quality" | |
num_inference_steps = 30 | |
guidance_scale = 5.0 | |
# ---------------------- | |
# Inference function with alignment | |
# ---------------------- | |
def generate_images(img1, img2, img3, prompt, w, num_samples, seed): | |
# Collect non-empty reference images | |
refs = [img for img in (img1, img2, img3) if img is not None] | |
if not refs: | |
return [] | |
# Align directly on PIL | |
aligned_refs = [align_face(img) for img in refs] | |
# Resize to model resolution | |
pil_images = [aligned.resize((512, 512)) for aligned in aligned_refs] | |
placeholder_token_ids = ip_model.pipe.tokenizer.convert_tokens_to_ids([placeholder_token]) | |
# Generate personalized samples | |
results = ip_model.generate( | |
pil_image=pil_images, | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_samples=num_samples, | |
num_inference_steps=num_inference_steps, | |
placeholder_token_ids=placeholder_token_ids, | |
seed=seed if seed > 0 else None, | |
guidance_scale=guidance_scale, | |
multiple_images=True, | |
special_token_weight=w | |
) | |
return results | |
# ---------------------- | |
# Gradio UI | |
# ---------------------- | |
with gr.Blocks() as demo: | |
gr.Markdown("## Nested Attention: Semantic-aware Attention Values for Concept Personalization") | |
gr.Markdown( | |
"Upload up to 3 reference images. " | |
"Faces will be auto-aligned before personalization. Include the placeholder token (e.g., \\<person\\>) in your prompt, " | |
"set token weight, and choose how many outputs you want." | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Reference images | |
with gr.Row(): | |
img1 = gr.Image(type="pil", label="Reference Image 1") | |
img2 = gr.Image(type="pil", label="Reference Image 2 (optional)") | |
img3 = gr.Image(type="pil", label="Reference Image 3 (optional)") | |
prompt_input = gr.Textbox(label="Prompt", placeholder="e.g., an abstract pencil drawing of a <person>") | |
w_input = gr.Slider(minimum=1.0, maximum=5.0, step=0.5, value=1.0, label="Special Token Weight (w)") | |
num_samples_input = gr.Slider(minimum=1, maximum=6, step=1, value=4, label="Number of Images to Generate") | |
seed_input = gr.Slider(minimum=-1, maximum=100000, step=1, value=-1, label="Random Seed (use -1 for random and up to 100000)") | |
generate_button = gr.Button("Generate Images") | |
# Add examples | |
gr.Examples( | |
examples=[ | |
["example_images/01.jpg", None, None, "a pop figure of a <person>, she stands on a white background", 2.0, 4, 1], | |
["example_images/01.jpg", None, None, "a watercolor painting of a <person>, closeup", 1.0, 4, 42], | |
["example_images/01.jpg", None, None, "a high quality photo of a <person> as a firefighter", 3.0, 4, 10], | |
], | |
inputs=[img1, img2, img3, prompt_input, w_input, num_samples_input, seed_input], | |
label="Example Prompts" | |
) | |
with gr.Column(scale=1): | |
output_gallery = gr.Gallery(label="Generated Images", columns=3) | |
generate_button.click( | |
fn=generate_images, | |
inputs=[img1, img2, img3, prompt_input, w_input, num_samples_input, seed_input], | |
outputs=output_gallery | |
) | |
demo.launch() | |