orpatashnik's picture
update
8eeff9c
raw
history blame
4.74 kB
import spaces
import os
import torch
from diffusers import StableDiffusionXLPipeline
import gradio as gr
from huggingface_hub import hf_hub_download, snapshot_download
from nested_attention_pipeline import NestedAdapterInference, add_special_token_to_tokenizer
from utils import align_face
# ----------------------
# Configuration (update paths as needed)
# ----------------------
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = snapshot_download("orpatashnik/NestedAttentionEncoder", allow_patterns=["image_encoder/**"])
image_encoder_path = os.path.join(image_encoder_path, "image_encoder")
personalization_ckpt = hf_hub_download("orpatashnik/NestedAttentionEncoder", "personalization_encoder/model.safetensors")
device = "cuda"
# Special token settings
placeholder_token = "<person>"
initializer_token = "person"
# ----------------------
# Load models
# ----------------------
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
)
add_special_token_to_tokenizer(pipe, placeholder_token, initializer_token)
ip_model = NestedAdapterInference(
pipe,
image_encoder_path,
personalization_ckpt,
1024,
vq_normalize_factor=2.0,
device=device
)
# Generation defaults
negative_prompt = "bad anatomy, monochrome, lowres, worst quality, low quality"
num_inference_steps = 30
guidance_scale = 5.0
# ----------------------
# Inference function with alignment
# ----------------------
@spaces.GPU
def generate_images(img1, img2, img3, prompt, w, num_samples, seed):
# Collect non-empty reference images
refs = [img for img in (img1, img2, img3) if img is not None]
if not refs:
return []
# Align directly on PIL
aligned_refs = [align_face(img) for img in refs]
# Resize to model resolution
pil_images = [aligned.resize((512, 512)) for aligned in aligned_refs]
placeholder_token_ids = ip_model.pipe.tokenizer.convert_tokens_to_ids([placeholder_token])
# Generate personalized samples
results = ip_model.generate(
pil_image=pil_images,
prompt=prompt,
negative_prompt=negative_prompt,
num_samples=num_samples,
num_inference_steps=num_inference_steps,
placeholder_token_ids=placeholder_token_ids,
seed=seed if seed > 0 else None,
guidance_scale=guidance_scale,
multiple_images=True,
special_token_weight=w
)
return results
# ----------------------
# Gradio UI
# ----------------------
with gr.Blocks() as demo:
gr.Markdown("## Nested Attention: Semantic-aware Attention Values for Concept Personalization")
gr.Markdown(
"Upload up to 3 reference images. "
"Faces will be auto-aligned before personalization. Include the placeholder token (e.g., \\<person\\>) in your prompt, "
"set token weight, and choose how many outputs you want."
)
with gr.Row():
with gr.Column(scale=1):
# Reference images
with gr.Row():
img1 = gr.Image(type="pil", label="Reference Image 1")
img2 = gr.Image(type="pil", label="Reference Image 2 (optional)")
img3 = gr.Image(type="pil", label="Reference Image 3 (optional)")
prompt_input = gr.Textbox(label="Prompt", placeholder="e.g., an abstract pencil drawing of a <person>")
w_input = gr.Slider(minimum=1.0, maximum=5.0, step=0.5, value=1.0, label="Special Token Weight (w)")
num_samples_input = gr.Slider(minimum=1, maximum=6, step=1, value=4, label="Number of Images to Generate")
seed_input = gr.Slider(minimum=-1, maximum=100000, step=1, value=-1, label="Random Seed (use -1 for random and up to 100000)")
generate_button = gr.Button("Generate Images")
# Add examples
gr.Examples(
examples=[
["example_images/01.jpg", None, None, "a pop figure of a <person>, she stands on a white background", 2.0, 4, 1],
["example_images/01.jpg", None, None, "a watercolor painting of a <person>, closeup", 1.0, 4, 42],
["example_images/01.jpg", None, None, "a high quality photo of a <person> as a firefighter", 3.0, 4, 10],
],
inputs=[img1, img2, img3, prompt_input, w_input, num_samples_input, seed_input],
label="Example Prompts"
)
with gr.Column(scale=1):
output_gallery = gr.Gallery(label="Generated Images", columns=3)
generate_button.click(
fn=generate_images,
inputs=[img1, img2, img3, prompt_input, w_input, num_samples_input, seed_input],
outputs=output_gallery
)
demo.launch()