from PIL import Image import torch import numpy as np import dlib import scipy def image_grid(imgs, rows, cols): assert len(imgs) == rows*cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) return grid def get_generator(seed, device): if seed is not None: if isinstance(seed, list): generator = [ torch.Generator(device).manual_seed(seed_item) for seed_item in seed ] else: generator = torch.Generator(device).manual_seed(seed) else: generator = None return generator def get_landmark_pil(pil_image, predictor, detector): """Get 68 facial landmarks as a NumPy array of shape (68, 2).""" img_np = np.array(pil_image.convert("RGB")) dets = detector(img_np, 1) if not dets: return None # Handle mmod or frontal detector output det = dets[0].rect if hasattr(dets[0], 'rect') else dets[0] shape = predictor(img_np, det) coords = [(pt.x, pt.y) for pt in shape.parts()] return np.array(coords) def align_face(pil_image, predictor, detector): """Align a face from a PIL.Image, returning an aligned PIL.Image of size 512x512.""" lm = get_landmark_pil(pil_image, predictor, detector) if lm is None: return pil_image # Define landmark regions lm_chin = lm[0: 17] # left-right lm_eyebrow_left = lm[17: 22] # left-right lm_eyebrow_right = lm[22: 27] # left-right lm_nose = lm[27: 31] # top-down lm_nostrils = lm[31: 36] # top-down lm_eye_left = lm[36: 42] # left-clockwise lm_eye_right = lm[42: 48] # left-clockwise lm_mouth_outer = lm[48: 60] # left-clockwise lm_mouth_inner = lm[60: 68] # left-clockwise eye_left = np.mean(lm_eye_left, axis=0) eye_right = np.mean(lm_eye_right, axis=0) eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left = lm_mouth_outer[0] mouth_right = lm_mouth_outer[6] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # Compute oriented crop x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] x /= np.hypot(*x) x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) qsize = np.hypot(*x) * 2 # Prepare image img = pil_image.convert("RGB") transform_size = 512 output_size = 512 enable_padding = True # Shrink image for speed shrink = int(np.floor(qsize / output_size * 0.5)) if shrink > 1: rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) img = img.resize(rsize, Image.Resampling.LANCZOS) quad /= shrink qsize /= shrink # Crop around face border = max(int(np.rint(qsize * 0.1)), 3) crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: img = img.crop(crop) quad -= crop[0:2] # Pad pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) if enable_padding and max(pad) > border - 4: pad = np.maximum(pad, int(np.rint(qsize * 0.3))) img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') h, w, _ = img.shape y, x, _ = np.ogrid[:h, :w, :1] mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) blur = qsize * 0.02 img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') quad += pad[:2] # Transform image img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR) if output_size < transform_size: img = img.resize((output_size, output_size), Image.Resampling.LANCZOS) # Resize to final output return img