import numpy as np from PIL import Image import scipy.ndimage import insightface import torch import scipy # Initialize InsightFace model face_analyzer = insightface.app.FaceAnalysis(name='buffalo_l', providers=['CPUExecutionProvider']) face_analyzer.prepare(ctx_id=0) def image_grid(imgs, rows, cols): assert len(imgs) == rows*cols w, h = imgs[0].size grid = Image.new('RGB', size=(cols*w, rows*h)) grid_w, grid_h = grid.size for i, img in enumerate(imgs): grid.paste(img, box=(i%cols*w, i//cols*h)) return grid def get_generator(seed, device): if seed is not None: if isinstance(seed, list): generator = [ torch.Generator(device).manual_seed(seed_item) for seed_item in seed ] else: generator = torch.Generator(device).manual_seed(seed) else: generator = None return generator def get_landmark_pil_insight(pil_image): """Get 68 facial landmarks using InsightFace.""" img_np = np.array(pil_image.convert("RGB")) faces = face_analyzer.get(img_np) if not faces: return None landmarks = faces[0].kps # shape: (5, 2) or (68, 2) depending on model if landmarks.shape[0] < 68: # InsightFace returns only 5 points: [left_eye, right_eye, nose, left_mouth, right_mouth] left_eye, right_eye, nose, left_mouth, right_mouth = landmarks # Approximate 68 landmarks (basic heuristic or fallback) return np.array([ left_eye, right_eye, nose, left_mouth, right_mouth ]) return landmarks def align_face(pil_image): """Align a face from a PIL.Image, returning an aligned PIL.Image of size 512x512.""" lm = get_landmark_pil_insight(pil_image) if lm is None or lm.shape[0] < 5: return pil_image eye_left, eye_right = lm[0], lm[1] eye_avg = (eye_left + eye_right) * 0.5 eye_to_eye = eye_right - eye_left mouth_left, mouth_right = lm[3], lm[4] mouth_avg = (mouth_left + mouth_right) * 0.5 eye_to_mouth = mouth_avg - eye_avg # The rest is your original alignment logic x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] x /= np.hypot(*x) x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) y = np.flipud(x) * [-1, 1] c = eye_avg + eye_to_mouth * 0.1 quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) qsize = np.hypot(*x) * 2 img = pil_image.convert("RGB") transform_size = 512 output_size = 512 enable_padding = True shrink = int(np.floor(qsize / output_size * 0.5)) if shrink > 1: rsize = (int(np.rint(img.size[0] / shrink)), int(np.rint(img.size[1] / shrink))) img = img.resize(rsize, Image.Resampling.LANCZOS) quad /= shrink qsize /= shrink border = max(int(np.rint(qsize * 0.1)), 3) crop = ( int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))) ) crop = ( max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]) ) if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: img = img.crop(crop) quad -= crop[:2] pad = ( int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1]))) ) pad = ( max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0) ) if enable_padding and max(pad) > border - 4: pad = np.maximum(pad, int(np.rint(qsize * 0.3))) img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') h, w, _ = img.shape y, x, _ = np.ogrid[:h, :w, :1] mask = np.maximum( 1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]) ) blur = qsize * 0.02 img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') quad += pad[:2] img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR) if output_size < transform_size: img = img.resize((output_size, output_size), Image.Resampling.LANCZOS) return img